SSD Review

The SSD Anthology: Understanding SSDs and New Drives from OCZ

By Anand Lal Shimpi on 3/18/2009

The SSD market appears to have changed a lot. Drives are cheaper, newer controllers are everywhere and there are more questions than answers as to how these SSDs perform and which ones are worth buying. In the follow-up to last year's Intel X25-M Review, this article will hopefully catch you up to speed on everything from why SSDs get slower over time to how well OCZ's latest drive fares.

Page 1

The Prelude

I spent about three weeks working on my review of Intel’s X25-M SSD. Most of that was research and writing and re-writing to not only review the product but also to talk about the rest of the SSDs in the marketplace and their deficiencies. Truth be told, I spent more time working on SSDs that weren’t the X25-M than the Intel drive itself. The Intel drive just worked as it should, the rest of them didn’t.

If you read the article, you know I was pretty harsh on some of the SSDs out at the time and if you’ve ever used any of those SSDs, you know why. Needless to say, there was some definite fallout from that review. I’m used to negative manufacturer response after a GPU review, but I’m always a bit surprised when it happens in any other segment.

I took a day or two off after that review went live, I think it was a day. Afterwards, I immediately started working on a follow-up. There was a strange phenomenon a few people noticed, something I unfortunately picked up on after the review went live; if you filled the X25-M up and re-benchmarked it, it got slower. And I had no idea why.

A few weeks later, I had it figured out. But then Nehalem was right around the corner. I’d tackle it after that. But then a new batch of SSDs from OCZ and other vendors were almost ready. I told myself I’d do them all at the same time. Then CES happened.

The More Things Change, The More They Stay The Same

If you look at the SSD market today, you’d assume that it’s very different from what it was just six months ago when the X25-M launched. People are worried that the Intel drive has issues with degrading performance over time. Some vendors are now shipping “revised” JMicron drives with multiple controllers, supposedly fixing all of the problems I talked about last year.

I hate to break it to you guys. As different as the world may seem today, it’s all very much the same.

The Intel drive is still the best of the best. Yes, it, and other SSDs do get slower over time and later in this article I’ll explain why it happens and why it’s not as big of a deal as you’d think. The issues I complained about with the JMicron drives from last year are still alive and well today; they’re just somewhat occluded.

Delay after delay kept me from writing this article, but I believe it’s for the best. What went in to what you’re about to read is nearly six months of research, testing and plain old work with SSDs.

The timing couldn’t be more perfect. We’re about to see a new wave of SSDs hit the market and it’s time to separate the fact from the fiction, the benchmarks from reality and the men from the boys. The last time I wrote an article about SSDs I ruffled quite a few feathers. That’s never my aim, but we’ll see what comes of this one.

READ THE COMPLETE ARTICLE CLICK HERE

Final Words

I began this article with a recap of my history with SSDs, stating that the more things change, the more they stay the same. Honestly, today, the SSD world isn't much different.

Drives are most definitely cheaper today; the Intel X25-M originally sold at close to $600 for 80GB and is now down in the $340 - $360 range. The Samsung SLC drives have lost their hefty price tags and are now just as affordable as the more mainstream MLC solutions.

But the segmentation of the SSD market still exists. There are good drives and there are bad ones.

Ultimately it all boils down to what you optimize for. On its desktop drives, Intel chose to optimize for the sort of random writes you’d find on a desktop. The X25-E is much more resilient to the workload a multi-user environment would throw at it, such as in a server and thus carries a handsome price tag.

At first glance it would appear that Samsung’s latest controller used in the preview OCZ Summit drive I tested optimizes for the opposite end of the spectrum: sacrificing latency for bandwidth. As the Summit was used more and more, its random write latency went up while its sequential write speed remained incredibly high. Based on these characteristics I’d venture that the Summit would be a great drive for a personal file server, while the Intel X25-M is better suited as a boot/app drive in your system.

I’d argue that Intel got it “right”. Given the limited sizes of SSDs today and the high cost per GB, no one in their right mind is using these drives for mass storage of large files - they’re using them as boot and application drives, that’s where they excel after all.

Over the past year Intel continually claimed that its expertise in making chipsets, microprocessors and generally with the system as a whole led to a superior SSD design. Based on my tests and my own personal use of the drive and literally every other one in this article, I’d tend to agree.

OCZ and Indilinx initially made the mistake of designing the Vertex and its Barefoot controller similarly to the Samsung based Summit. It boasted very high read/write speeds but at the expense of small file write latency. In the revised firmware, the one that led to the shipping version, OCZ went back to Indilinx and changed approaches. The drive now performs like a slower Intel drive; rightfully so, as it’s cheaper.

While I wouldn’t recommend any of the JMicron based drives, with the Vertex I do believe we have a true value alternative to the X25-M. The Intel drive is still the best, but it comes at a high cost. The Vertex can give you a similar experience, definitely one superior to even the fastest hard drives, but at a lower price. And I’ll spare you the obligatory reference to the current state of the global economy. The Samsung SLC drives have come down in price but they don't seem to age as gracefully as the Intel or OCZ Vertex drives. If you want price/performance, the Vertex appears to be the best option and if you want all-out performance, snag the Intel drive.

The only potential gotcha is that both OCZ and Indilinx are smaller companies than Intel. There’s a lot of validation that goes into these drives and making sure they work in every configuration. While the Vertex worked totally fine in the configurations I tested, that’s not to say that every last bug has been worked out. There are a couple of threads in OCZ’s own forums that suggest compatibility problems with particular configurations; while this hasn’t been my own experience, it’s worth looking into before you purchase the drive.

While personally I'm not put off by the gradual slowdown of SSDs, I can understand the hesitation. In the benchmarks we've looked at today, for the most part these drives perform better than the fastest hard drives even when the SSDs are well worn. But with support for TRIM hopefully arriving close to the release of Windows 7, it may be very tempting to wait. Given that the technology is still very new, the next few revisions to drives and controllers should hold tremendous improvements.

Drives will get better and although we're still looking at SSDs in their infancy, as a boot/application drive I still believe it's the single best upgrade you can do to your machine today. I've moved all of my testbeds to SSDs as well as my personal desktop. At least now we have two options to choose from: the X25-M and the Vertex.

Be sure to read our latest SSD article: The SSD Relapse for an updated look at the SSD market. CLICK HERE

Review of Intel’s X25-M SSD CLICK HERE