Overclocking

Overclocking

Overclocking is the process of operating a computer component at a higher clock rate (more clock cycles per second) than it was designed for or was specified by the manufacturer. This is practiced more by enthusiasts than professional users seeking an increase in the performance of their computers, as overclocking carries risks of less reliable functioning and damage. There are several purposes for overclocking: for professional users overclocking allows pushing the boundary of professional personal computing capacity therefore allowing improved productivity or allows testing over-the-horizon technologies beyond that possible with the available component specifications before entering the specialized computing realm and pricing - this leverages the manufacturing practice to specify components to a level that optimizes yield and profit margin, some components are capable of more; there are hobbyist that like car enthusiast enjoy building, tuning, and comparison racing their systems with standardized benchmark software - providing help forums for the other groups named here; some purchase less expensive computer components and then overclock to higher clock rates, taking advantage of marketing strategies that rely on multi-tier pricing of the same component that is equally hobbled for tiered performance; a similar but slightly different approach to cost saving is overclocking outdated components to keep pace with new system requirements, rather than purchasing new hardware - leveraging the low risk resulting from a failure since the system is fully depreciated and new system is needed anyways.

People who overclock their components mainly focus their efforts on processors, video cards, motherboard chipsets, and RAM. It is done through manipulating the CPU multiplier and the motherboard's front-side bus (FSB) clock rate until a maximum stable operating frequency is reached, although with the introduction of Intel's new X58 chipset and the Core i7 processor, the front side bus has been replaced with the QPI (Quick Path Interconnect); often this is called the Baseclock (BCLK). While the idea is simple, variation in the electrical and physical characteristics of computing systems complicates the process. Power consumption of digital circuits often increases with frequency or clocking speed. The high-frequency operation of semiconductor devices as used in computers to a certain extent improves with an increase in voltage; but operation at high speed and increased voltage increases power dissipation and heating. Overheating caused by higher dissipation, and operation at higher voltage regardless of power, can cause malfunctioning or permanent damage. Increasing voltage supplied and improving cooling can increase the maximum stable operating speed, subject to these risks.

CPU multipliers, bus dividers, voltages, thermal loads, cooling techniques and several other factors such as individual semiconductor clock and thermal tolerances can affect it

Overclocking, for some, seems too good to be true, but it is very possible (and sometimes fun) to do. However, overclocking can have its consequences. When done improperly, damage may result in your system, and in the worst case, a complete system failure. This guide will focus completely on PCs, though it is possible to do on Macs as well. Also, if you have absolutely no idea of the overclocking fundamentals, it is suggested that you read this first - Click here

How to Overclock a PC - Click here

HWBOT: Worldwide Overclocking League - Click here

AMD's 2012 Trinity APU Playing Deus Ex - Click here

AMD’s upcoming FX processor--codenamed Bulldozer

AMD Breaks Overclocking Record, Leaves the Competition in the Dust

By Nate Ralph, PCWorld Sep 13, 2011 6:01 AM