[1] S. Wang, Y. Choi, J. Chen, M. El-Khamy, and R. Henao. “Toward Sustainable Continual Learning: Detection and Knowledge Repurposing for Reoccurring Tasks”. In: 2025 IEEE International Workshop on Machine Learning for Signal Processing. 2025. Link.
[2] Q. Liu, M. El-Khamy, and K.-B. Song. “Tiny-VPS: Tiny Video Panoptic Segmentation Standing on the Shoulder of Giant-VPS”. In: IEEE Open Journal of Signal Processing (2025). Link.
[3] S. Yi, Q. Liu, and M. El-Khamy. “Hardware-friendly static quantization method for video diffusion transformers”. In: 2025 IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR). 2025. Link.
[4] Y. Zhou, M. El-Khamy, and K.-B. Song. “Regularizing Differentiable Architecture Search with Smooth Activation”. In: arXiv preprint arXiv:2504.16306 (2025). Link.
[5] S. Hor, M. El-Khamy, Y. Zhou, A. Arbabian, and S. Lim. “CM-ASAP: Cross-modality adaptive sensing and perception for efficient hand gesture recognition”. In: 2024 IEEE 7th International Conference on Multimedia Information Processing and Retrieval (MIPR). IEEE. 2024, pp. 207– 213. Link.
[6] B. Gholami, M. El-Khamy, and K.-B. Song. “Latent Mixup Knowledge Distillation for Single Channel Speech Enhancement”. In: IEEE Journal of Selected Topics in Signal Processing (2025). Link.
[7] K. Vo, M. El-Khamy, and Y. Choi. “PPG-to-ECG Signal Translation for Continuous Atrial Fibrillation Detection via Attention-based Deep State-Space Modeling”. In: 2024 46th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. 2024, pp. 1–7. Link.
[8] Q. Liu, M. El-Khamy, and K.-B. Song. “1st Place Winner of the 2024 Pixel-level Video Understanding in the Wild (CVPR’24 PVUW) Challenge in Video Panoptic Segmentation and Best Long Video Consistency of Video Semantic Segmentation”. In: arXiv preprint arXiv:2406.05352 (2024). Link.
[9] B. Gholami, M. El-Khamy, and K. Song. “Knowledge Distillation for Tiny Speech Enhancement with Latent Feature Augmentation”. In: Proc. Interspeech 2024. 2024, pp. 652–656. Link.
[10] B. Gholami, M. El-Khamy, and K.-B. Song. “Latent feature disentanglement for visual domain generalization”. In: IEEE Transactions on Image Processing 32 (2023), pp. 5751–5763. Link.
[11] B. Gholami, M. El-Khamy, and K.-B. Song. “Domain invariant regularization by disentangling content and style Features for visual domain generalization”. In: 2023 IEEE International Conference on Image Processing (ICIP). IEEE. 2023, pp. 1525–1529. Link.
[12] S. Babakniya, A. R. Elkordy, Y. H. Ezzeldin, Q. Liu, K.-B. Song, M. EL-Khamy, and S. Avestimehr. “SLoRA: Federated Parameter Efficient Fine-Tuning of Language Models”. In: International Workshop on Federated Learning in the Age of Foundation Models in Conjunction with NeurIPS 2023. 2023. Link.
[13] J. Kim, M. El-Khamy, and J. Lee. “End-to-end multi-task denoising for joint SDR and PESQ optimization”. In: arXiv preprint arXiv:1901.09146 (2023). Link.
[14] Q. Liu and M. El-Khamy. “PANOPTIC-DEEPLAB-DVA: improving panoptic deeplab with dual value attention and instance boundary aware regression”. In: 2022 IEEE International Conference on Image Processing (ICIP). IEEE. 2022, pp. 3888–3892. Link.
[15] S. Wang, Y. Choi, J. Chen, M. El-Khamy, and R. Henao. “Toward sustainable continual learning: Detection and knowledge repurposing of similar tasks”. In: arXiv preprint arXiv:2210.05751 (2022). Link.
[16] B. Gholami, Q. Liu, M. El-Khamy, and J. Lee. “Multiexpert Adversarial Regularization for Robust and Data-Efficient Deep Supervised Learning”. In: IEEE Access 10 (2022), pp. 85080–85094. Link.
[17] Q. Liu, H. Su, M. El-Khamy, and K.-B. Song. “Deepgbass: Deep guided boundary-aware semantic segmentation”. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2022, pp. 2644–2648. Link.
[18] W. Hao, N. Mehta, K. J. Liang, P. Cheng, M. El-Khamy, and L. Carin. “Waffle: Weight anonymized factorization for federated learning”. In: IEEE Access 10 (2022), pp. 49207–49218. Link.
[19] V. Janapa Reddi, D. Kanter, P. Mattson, J. Duke, T. Nguyen, R. Chukka, K. Shiring, K.-S. Tan, M. Charlebois, W. Chou, M. El-Khamy, et al. “MLPerf mobile inference benchmark: An industrystandard open-source machine learning benchmark for on-device AI”. In: Proceedings of Machine Learning and Systems 4 (2022), pp. 352–369. Link.
[20] Q. Liu, H. Su, and M. El-Khamy. “Deep Guidance Decoder with Semantic Boundary Learning for Boundary-Aware Semantic Segmentation”. In: 2022 IEEE International Conference on Consumer Electronics (ICCE). IEEE. 2022, pp. 1–2. Link.
[21] Y. Choi, M. El-Khamy, and J. Lee. “Zero-shot learning of a conditional generative adversarial network for data-free network quantization”. In: 2021 IEEE International Conference on Image Processing (ICIP). IEEE. 2021, pp. 3552–3556. Link.
[22] Y. Choi, M. El-Khamy, and J. Lee. “Dual-teacher class-incremental learning with data-free generative replay”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021, pp. 3543–3552. Link.
[23] W. Hao, M. El-Khamy, J. Lee, J. Zhang, K. J. Liang, C. Chen, and L. C. Duke. “Towards fair federated learning with zero-shot data augmentation”. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2021, pp. 3310–3319. Link.
[24] R. Szeto, M. El-Khamy, J. Lee, and J. J. Corso. “HyperCon: Image-to-video model transfer for video-to-video translation tasks”. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2021, pp. 3080–3089. Link.
[25] H. Ren, M. El-Khamy, and J. Lee. “Stereo disparity estimation via joint supervised, unsupervised, and weakly supervised learning”. In: 2020 IEEE International Conference on Image Processing (ICIP). IEEE. 2020, pp. 2760–2764. Link.
[26] Q. Liu, M. El-Khamy, D. Bai, and J. Lee. “GSANet: semantic segmentation with global and selective attention”. In: 2020 IEEE International Conference on Image Processing (ICIP). IEEE. 2020, pp. 1471–1475. Link.
[27] M. El-Khamy, H. Ren, X. Du, and J. Lee. “Multitask deep neural networks for tele-wide stereo matching”. In: IEEE Access 8 (2020), pp. 184383–184398. Link.
[28] Y. Choi, M. El-Khamy, and J. Lee. “Learning sparse low-precision neural networks with learnable regularization”. In: IEEE Access 8 (2020), pp. 96963–96974. Link.
[29] A. Fazel, M. El-Khamy, and J. Lee. “CAD-AEC: Context-aware deep acoustic echo cancellation”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 6919–6923. Link.
[30] J. Kim, M. El-Khamy, and J. Lee. “T-gsa: Transformer with gaussian-weighted self-attention for speech enhancement”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 6649–6653. Link.
[31] H. Ren, M. El-Khamy, and J. Lee. “Deep Monocular Video Depth Estimation Using Temporal Attention”. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2020, pp. 1988–1992. Link.
[32] J. J. Ryu, Y. Choi, Y.-H. Kim, M. El-Khamy, and J. Lee. “Wyner VAE: A variational autoencoder with succinct common representation learning”. In: (2020). Link.
[33] Y. Choi, M. El-Khamy, and J. Lee. “Universal deep neural network compression”. In: IEEE Journal of Selected Topics in Signal Processing 14.4 (2020), pp. 715–726. Link.
[34] X. Du, M. El-Khamy, and J. Lee. “FBA-AMNET: Foreground-background aware Atrous multiscale networks for stereo disparity estimation”. In: 2020 IEEE International Conference on Consumer Electronics (ICCE). IEEE. 2020, pp. 1–2. Link.
[35] H. Ren, A. Raj, M. El-Khamy, and J. Lee. “SUW-learn: Joint supervised, unsupervised, weakly supervised deep learning for monocular depth estimation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 750–751. Link.
[36] H. Ren, A. Kheradmand, M. El-Khamy, S. Wang, D. Bai, and J. Lee. “Real-world super-resolution using generative adversarial networks”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 436–437. Link.
[37] Y. Choi, J. Choi, M. El-Khamy, and J. Lee. “Data-free network quantization with adversarial knowledge distillation”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 710–711. Link.
[38] A. Lugmayr, M. Danelljan, R. Timofte, M. El-Khamy, et al. “Ntire 2020 challenge on real-world image super-resolution: Methods and results”. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. 2020, pp. 494–495. Link.
[39] H. Ren, M. El-Khamy, and J. Lee. “CNF+ CT: Context network fusion of cascade-trained convolutional neural networks for image super-resolution”. In: IEEE Transactions on Computational Imaging 6 (2019), pp. 447–462. Link.
[40] J. Kim, M. El-Khamy, and J. Lee. “End-to-end multi-task denoising for the joint optimization of perceptual speech metrics”. In: arXiv preprint arXiv:1910.10707 (2019). Link.
[41] M. El-Khamy, X. Du, H. Ren, and J. Lee. “Multi-task learning of depth from tele and wide stereo image pairs”. In: 2019 IEEE International Conference on Image Processing (ICIP). IEEE. 2019, pp. 4300–4304. Link.
[42] A. Fazel, M. El-Khamy, and J. Lee. “Deep Multitask Acoustic Echo Cancellation”. In: INTERSPEECH. 2019. Link.
[43] M. El-Khamy, H. Ren, X. Du, and J. Lee. “TW-SMNet: Deep Multitask Learning of Tele-Wide Stereo Matching”. In: arXiv preprint arXiv:1906.04463 (2019). Link.
[44] H. Ren, M. El-Khamy, and J. Lee. “Deep Robust Single Image Depth Estimation Neural Network Using Scene Understanding”. In: CVPR Workshops. 2019. Link.
[45] J. J. Ryu, Y. Choi, Y.-H. Kim, M. El-Khamy, and J. Lee. “Learning with succinct common representation based on Wyner’s common information”. In: arXiv preprint arXiv:1905.10945 (2019). Link.
[46] Y. Choi, M. El-Khamy, and J. Lee. “Jointly sparse convolutional neural networks in dual spatialwinograd domains”. In: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, pp. 2792–2796. Link.
[47] X. Du, M. El-Khamy, and J. Lee. “AMNet: Deep atrous multiscale stereo disparity estimation networks”. In: arXiv preprint arXiv:1904.09099 (2019). Link.
[48] Y. Choi, M. El-Khamy, and J. Lee. “Variable rate deep image compression with a conditional autoencoder”. In: Proceedings of the IEEE/CVF international conference on computer vision. 2019, pp. 3146–3154. Link.
[49] H. Ren, M. El-Khamy, and J. Lee. “DN-ResNet: Efficient deep residual network for image denoising”. In: Asian Conference on Computer Vision, Lecture addendums in Computer Science ((LNIP,volume 11365)). Springer. 2018, pp. 215–230. Link.
[50] H. Ren, M. El-Khamy, and J. Lee. “Video super resolution based on deep convolution neural network with two-stage motion compensation”. In: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW). IEEE. 2018, pp. 1–6. Link.
[51] Y. Choi, M. El-Khamy, and J. Lee. “Compression of deep convolutional neural networks under joint sparsity constraints”. In: arXiv preprint arXiv:1805.08303 (2018). Link.
[52] X. Du, M. El-Khamy, V. I. Morariu, J. Lee, and L. Davis. “Fused deep neural networks for efficient pedestrian detection”. In: arXiv preprint arXiv:1805.08688 (2018). Link.
[53] J. Kim, M. El-Khamy, and J. Lee. “BridgeNets: Student-teacher transfer learning based on recursive neural networks and its application to distant speech recognition”. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2018, pp. 5719– 5723. Link.
[54] H. Ren, M. El-Khamy, and J. Lee. “CT-SRCNN: cascade trained and trimmed deep convolutional neural networks for image super resolution”. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE. 2018, pp. 1423–1431. Link.
[55] J. J. Ryu, Y.-H. Kim, Y. Choi, M. El-Khamy, and J. Lee. “Variational Inference via a Joint Latent Variable Model with Common Information Extraction”. In: Third Workshop on Bayesian Deep Learning (NeurIPS 2018). 2018. Link.
[56] Y. Choi, M. El-Khamy, and J. Lee. “Learning low precision deep neural networks through regularization”. In: CoRR (2018). Link.
[57] M. El-Khamy, H.-P. Lin, J. Lee, and I. Kang. “Circular buffer rate-matched polar codes”. In: IEEE Transactions on Communications 66.2 (2017), pp. 493–506. Link.
[58] X. Du, M. El-Khamy, J. Lee, and L. Davis. “Fused DNN: A deep neural network fusion approach to fast and robust pedestrian detection”. In: 2017 IEEE winter conference on applications of computer vision (WACV). IEEE. 2017, pp. 953–961. Link.
[59] M. El-Khamy, H. Mahdavifar, G. Feygin, J. Lee, and I. Kang. “Relaxed polar codes”. In: IEEE Transactions on Information Theory 63.4 (2017), pp. 1986–2000. Link.
[60] J. Kim, M. El-Khamy, and J. Lee. “Residual LSTM: Design of a deep recurrent architecture for distant speech recognition”. In: arXiv preprint arXiv:1701.03360 (2017). Link.
[61] H. Ren, M. El-Khamy, and J. Lee. “Image super resolution based on fusing multiple convolution neural networks”. In: Proceedings of the IEEE conference on computer vision and pattern recognition workshops. 2017, pp. 54–61. Link.
[62] Y. Choi, M. El-Khamy, and J. Lee. “Towards the Limit of Network Quantization”. In: International Conference on Learning Representations. 2017. Link.
[63] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “Achieving the uniform rate region of general multiple access channels by polar coding”. In: IEEE Transactions on Communications 64.2 (2015), pp. 467–478. Link.
[64] M. El-Khamy, H.-P. Lin, and J. Lee. “Binary polar codes are optimised codes for bitwise multistage decoding”. In: Electronics Letters 52.13 (2016), pp. 1130–1132. Link.
[65] M. El-Khamy. “Polar codes are OCBM codes”. In: IEEE GLOBECOM Lightning Talk, San Diego, CA, USA (2015). Link.
[66] K. Liu, M. El-Khamy, and J. Lee. “Finite-length algebraic spatially-coupled quasi-cyclic LDPC codes”. In: IEEE journal on selected areas in communications 34.2 (2015), pp. 329–344. Link.
[67] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “Polar coding for bit-interleaved coded modulation”. In: IEEE Transactions on Vehicular Technology 65.5 (2015), pp. 3115–3127. Link.
[68] M. El-Khamy, H. Mahdavifar, G. Feygin, J. Lee, and I. Kang. “Relaxed channel polarization for reduced complexity polar coding”. In: 2015 IEEE Wireless Communications and Networking Conference (WCNC). IEEE. 2015, pp. 207–212. Link.
[69] M. El-Khamy, J. Lee, and I. Kang. “Detection Analysis of CRC-Assisted Decoding”. In: IEEE Communications Letters 19.3 (2015), pp. 483–486. Link.
[70] M. Farrag, O. Muta, M. El-Khamy, H. Furukawa, and M. El-Sharkawy. “Wide-Band Cooperative Compressive Spectrum Sensing for Cognitive Radio Systems Using Distributed Sensing Matrix”. In: 2014 IEEE 80th Vehicular Technology Conference (VTC2014-Fall). 2014, pp. 1–6. Link.
[71] K. Liu, M. El-Khamy, J. Lee, I. Kang, and A. Yedla. “Non-binary algebraic spatially-coupled quasi-cyclic LDPC codes”. In: 2014 IEEE International Symposium on Information Theory. 2014, pp. 511–515. Link.
[72] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “Performance Limits and Practical Decoding of Interleaved Reed-Solomon Polar Concatenated Codes”. In: IEEE Transactions on Communications 62.5 (2014), pp. 1406–1417. Link.
[73] J. Wu, M. El-Khamy, J. Lee, and I. Rang. “LLR optimization for iterative MIMO BICM receivers”. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2014, pp. 1956–1960. Link.
[74] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “Techniques for polar coding over multiple access channels”. In: 2014 48th Annual Conference on Information Sciences and Systems (CISS). 2014, pp. 1–6. Link.
[75] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “Fast multi-dimensional polar encoding and decoding”. In: 2014 Information Theory and Applications Workshop (ITA). 2014, pp. 1–5. Link.
[76] M. Farrag, O. Muta, and M. El-Khamy. “Wide-Band Cooperative Compressive Spectrum Sensing Using Distributed Sensing Matrix for Cognitive Radio Systems”. In: IEICE Tech. Rep. Vol. 113. 464. Mar. 2014, pp. 17–22. Link.
[77] M. El-Khamy, M. Medra, and H. M. ElKamchouchi. “Reduced complexity list sphere decoding for MIMO systems”. In: Digital Signal Processing 25 (2014), pp. 84–92. issn: 1051-2004. Link.
[78] M. El-Khamy, J. Wu, J. Lee, and I. Kang. “Online log-likelihood ratio scaling for robust turbo decoding”. In: IET Communications 8.2 (2014), pp. 217–226. Link.
[79] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “On the construction and decoding of concatenated polar codes”. In: 2013 IEEE International Symposium on Information Theory. 2013, pp. 952–956. Link.
[80] M. El-Khamy, J. Lee, and I. Kang. “Soft Turbo HARQ combining”. In: 2013 IEEE International Conference on Communications (ICC). 2013, pp. 5542–5547. Link.
[81] J. Wu, M. El-Khamy, J. Lee, and I. Kang. “BICM performance improvement via online LLR optimization”. In: 2013 IEEE Wireless Communications and Networking Conference (WCNC). 2013, pp. 3850–3855. Link.
[82] H. S. Hussein, M. El-Khamy, and M. El-Sharkawy. “Blind configuration of multi-view video coder prediction structure”. In: IEEE Transactions on Consumer Electronics 59.1 (2013), pp. 191–199. Link.
[83] A. Yedla, M. El-Khamy, J. Lee, and I. Kang. “Performance of Spatially-Coupled LDPC Codes and Threshold Saturation over BICM Channels”. In: CoRR abs/1303.0296 (2013). Link.
[84] H. Mahdavifar, M. El-Khamy, J. Lee, and I. Kang. “Compound polar codes”. In: 2013 Information Theory and Applications Workshop (ITA). 2013, pp. 1–6. Link.
[85] H. S. Hussein, M. El-Khamy, F. Mehdipour, and M. El-Sharkawy. “Low complexity independent multi-view video coding”. In: 2013 IEEE 10th Consumer Communications and Networking Conference (CCNC). 2013, pp. 37–42. Link.
[86] M. El-Khamy, M. Farrag, and M. El-Sharkawy. ““Wide-Band Secure Compressed Spectrum Sensing for Cognitive Radio Systems”. In: Progress In Electromagnetics Research B 53 (2013), pp. 47– 71. Link.
[87] M. Farrag, M. El-Khamy, O. Muta, M. El-Sharkawy, and H. Furukawa. “Reduced Complexity Secure Cooperative Compressive Spectrum Sensing for Wideband Cognitive Radio Systems”. In: IEEE Vehicular Technology Society Asia Pacific Wireless Communications Symposium (APWCS 2012). Aug. 2012.
[88] M. Farrag, M. El-Khamy, and O. Muta. “Reduced Complexity Secure Cooperative Compressive Spectrum Sensing for Cognitive Radio Applications”. In: IEICE Tech. Rep 112.132 (July 2012), pp. 67–72. Link.
[89] M. M. Gad, M. El-Khamy, and H. T. Mouftah. “Dual band connectivity of cognitive radio networks”. In: CogART ’11: Proceedings of the 4th International Conference on Cognitive Radio and Advanced Spectrum Management. 2011, p. 20. Link.
[90] W. E. Shafai, B. Hrušovský, M. El-Khamy, and M. El-Sharkawy. “Joint space-time-view error concealment algorithms for 3D multi-view video”. In: 2011 18th IEEE International Conference on Image Processing. 2011, pp. 2201–2204. Link.
[91] M. Farrag, M. El-Khamy, and M. El-Sharkawy. “Optimized bases compressive spectrum sensing for wideband cognitive radio”. In: 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications. 2011, pp. 305–309. Link.
[92] M. El-Khamy. “A joint routing and coding approach to linear network coding”. In: 2011 Wireless Advanced. 2011, pp. 246–251. Link.
[93] A. Barakat and M. El-Khamy. “Bandwidth extension of UWB planar antenna with band-notched characteristics”. In: IEEE Middle East Conference on Antennas and Propagation (MECAP 2010). 2010, pp. 1–5. Link.
[94] M. El-Khamy, H. Vikalo, B. Hassibi, and R. J. McEliece. “Performance of Sphere Decoding of Block Codes”. In: IEEE Transactions on Communications 57.10 (2009), pp. 2940–2950. Link.
[95] M. El-Khamy, J. Hou, and N. Bhushan. “Design of rate-compatible structured LDPC codes for hybrid ARQ applications”. In: IEEE Journal on Selected Areas in Communications 27.6 (2009), pp. 965–973. Link.
[96] F. Parvaresh, M. El-Khamy, M. Stepanov, D. Augot, R. J. McEliece, and A. Vardy. “Algebraic List decoding of Reed-Solomon product codes”. In: Proceedings of the Tenth International Workshop on Algebraic and Combinatorial Coding Theory. Sept. 2006, pp. 210–213. Link.
[97] M. El-Khamy, J. Hou, and N. Bhushan. “H-ARQ Rate-Compatible Structured LDPC Codes”. In: 2006 IEEE International Symposium on Information Theory. 2006, pp. 1134–1138. Link.
[98] M. El-Khamy and R. Garello. “On the Weight Enumerator and the Maximum Likelihood Performance of Linear Product Codes”. In: CoRR abs/cs/0601095 (2006). Link.
[99] M. El-Khamy and R. Garello. “On the Maximum Likelihood Performance of Linear Product Codes”. In: IEICE Technical Report 106.60 (May 2006), pp. 59–64. Link.
[100] M. El-Khamy and R. J. McEliece. “The partition weight enumerator of MDS codes and its applications”. In: Proceedings. International Symposium on Information Theory, 2005. ISIT 2005. 2005, pp. 926–930. Link.
[101] M. El-Khamy, H. Vikalo, and B. Hassibi. “Bounds on the performance of sphere decoding of linear block codes”. In: IEEE Information Theory Workshop, 2005. 2005. Link.
[102] M. El-Khamy. “The average weight enumerator and the maximum likelihood performance of product codes”. In: 2005 International Conference on Wireless Networks, Communications and Mobile Computing. Vol. 2. 2005, 1587–1592 vol.2. Link.
[103] M. El-Khamy and R. J. McEliece. “Bounds on the average binary minimum distance and the maximum likelihood performance of Reed Solomon codes”. In: 42nd Allerton Conf. on Communication, Control and Computing. 2004. Link.
[104] M. El-Khamy, R. J. McEliece, and J. Harel. “Performance enhancements for algebraic soft decision decoding of Reed-Solomon codes”. In: International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings. 2004, pp. 421–. Link.
[105] M. El-Khamy and R. J. McEliece. “Iterative algebraic soft-decision list decoding of Reed-Solomon codes”. In: IEEE Journal on Selected Areas in Communications 24.3 (2006), pp. 481–490. Link.
[106] M. El-Khamy, S. Elnoubi, and O. Alim. “Centralized adaptive MMSE detectors for multirate DSCDMA in multipath fading channels”. In: Proceedings of the Nineteenth National Radio Science Conference. 2002, pp. 381–388. Link.
[107] M. El-Khamy, S. Elnoubi, and O. A. Alim. “CYCLIC MINIMUM VARIANCE DETECTION OF MULTIRATE DS-CDMA IN MULTIPATH FADING CHANNELS”. In: XXVIIth URSI General
Assembly 2002 (2002). Link.
[108] O. Alim, S. Elnoubi, and M. El-Khamy. “Blind detection of high data rate wireless CDMA in multipath channels”. In: 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No.01EX479). Vol. 2. 2001, 442–447 vol.2. Link.
[109] M. El-Khamy. “New approaches to the analysis and design of Reed-Solomon related codes”. PhD thesis. California Institute of Technology, 2007. Link.
[110] M. El-Khamy. Reed-Solomon Related Codes: New Approaches to Performance Analysis and Decoding Algorithms. VDM-Verlag, June 2009. ISBN-13: 9783639149487; Link.
[111] M. El-Khamy and R. J. McEliece. “Interpolation multiplicity assignment algorithms for algebraic soft-decision decoding of Reed-Solomon codes”. In: vol. 68. AMS-DIMACS volume on Algebraic Coding Theory and Information Theory. Book. Association for Computer Machinery (ACM), 2005. Chap. 7, pp. 99–120. Link.
Copyright Information
The following statement applies to all publications on this site that are published by IEEE, ACM, AMS, IET, ELSEVIER, and other publishers. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. Permission from IEEE, ACM, AMS or copyright holder must be obtained for all uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.