Publications

Published or In Press:

%-Undergraduate; * - Lab assistant; ^ - graduate student; # - postdoc


[32] M. Shu^# & E.V. Moran. 2023. Identifying genetic variation and drought-tolerance phenotypes in ponderosa pine. Ecology & Evolution. 13:e10620.


[31] T. Qiu et al. 2023. Masting is uncommon in trees that depend on mutualist

dispersers in the context of global climate and fertility gradient. Nature Plants  9:1044-1056.


[30] Bogdziewicz et al. 2023. Linking seed size and number to trait syndromes in

trees. Global Ecology & Biogeography 32(5): 683-694.


[29] D. Wu^, M. Shu^#, & E.V. Moran. 2023. Heritability of plastic trait changes in drought-exposed ponderosa pine seedlings. Ecosphere 14:e4454.


[28] T. Qiu et al. 2022. The limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery. Nature Communications.

13:2381


[27] V. Journé et al. 2022. Globally, tree fecundity exceeds productivity gradients.

Ecology Letters. 00:1–12


[26] E.V. Moran, W. Thuiller, A.L. Angert, M. Benito Garzón. 2021. Editorial: Predicting and managing climate-driven range shifts in plants. Frontiers in Ecology & Evolution. 10: 856213.


[25] S. Sharma et al. 2022. North American tree migration paced by climate in the West, lagging in the East. PNAS. 119(3): e2116691118 

[24] E.V. Moran, Nikole Vannest*, M. Aubry-Kientz# 2021. Modeling the forest dynamics of the Sierra Nevada under climate change using SORTIE-ND. Annals of Forest Science. 78:75 

[23] J.S. Clark et al. 2021. Continent-wide change in tree fecundity driven by indirect climate effects. Nature Communications.12:1242 

[22] E.V. Moran. 2020. Simulating the effects of local adaptation and life history on the ability of plants to track climate shifts. AoB Plants.12(1):plaa008 

[21] J. Lauder^, E.V. Moran, S.C. Hart. 2019. Fight or Flight? Tradeoffs between drought defense and reproduction in conifers. Tree Physiology. 39(7):1071-1085.

[20] E.V. Moran, A.J. Das, J.E. Keeley, & N.L. Stephenson. 2019. Negative impacts of summer heat on Sierra Nevada tree seedlings. Ecosphere. 10(6):e02776

[19] Aubry-Kientz, M.#, E.V. Moran. 2017.  Climate impacts on tree growth in the Sierra Nevada.  Forests. 8:414.

[18] Moran, E.V., A. Reid*, & J.M. Levine. 2017. Adaptation to climate along elevation gradients despite gene flow in invasive Solidago canadensis. PloS One. 12(9):e0185539.

[17] Lustenhower, N.^, E.V. Moran, & J.M. Levine. 2017. Life history correlations equalize spread velocities across plant taxa.  Global Ecology & Biogeography.  26:1398-1407.

[16] Moran, E.V., J. Lauder^, C. Musser*, A. Stathos*, M. Shu^.  2017.  Genetics of drought tolerance in conifers.  New Phytologist. Tansley Review. 216:1034-1048.

[15] Moran, E.V. & R.A. Ormond*. 2015. Simulating the effects of intraspecific variation, disturbance, and competition on climate-driven range shifts in trees.PLoS One. 10(11):e0142369.

[14] Moran, E.V., F. Hartig, & D.M. Bell. 2015. Intra-specific trait variation across scales: implications for understanding global change responses. Global Change Biology. 22:137-150.

[13] Moran, E.V. & J.M. Alexander. 2014.  Evolutionary responses to global change: Lessons from invasive species.  Ecology Letters.  17(5):637-649.  (Selected for “Faculty of 1000 Prime”)

[12] Moran, E.V., S. Bewick, and C.A. Cobbold.  2013.  Effects of plant genotype and between-patch dispersal rate on the population  dynamics of a forest pest.  Ecology. 94(12):2792-2802.

[11] Moran, E.V., and M.E. Kubiske. 2013.  Can elevated CO2 and ozone shift the genetic composition of aspen (Populus tremuloides) stands?  New Phytologist.  198:466-475.

[10] Barton, B. and E.V. Moran2013. Measuring diversity on the Supreme Court with biodiversity statistics. Journal of Empirical   Legal Studies.  10(1):1-34.

[9] Moran, E.V., and J.S. Clark.  2012. Between-site differences in the scale of dispersal and gene flow in red oak.  PLoS One. 7(5): e36492

[8] Moran, E.V., and J.S. Clark.  2012. Causes and consequences of unequal seedling production in forest trees: a case study in red oaks. Ecology. 93(5):1082-1094.

 [7] Moran, E.V., J. Willis, and J.S. Clark. 2012. Genetic evidence for hybridization in red oaks (Quercus, Sect. Lobatae, Fagaceae).  American Journal of Botany. 99(2):1-9.

[6] Clark, J., D. Bell, M. Hersh, M. Kwit, E. Moran, C. Salk, A. Stine, D. Valle, K. Zhu. 2011. Individual-scale variation, species-scale differences:  Inference needed to understand diversity. Ecology Letters. 14:1273-1287.

[5] Moran, E.V., and J.S. Clark.  2011.  Estimating seed and pollen movement in a monoecious plant: a hierarchical Bayesian approach integrating genetic and ecological data.  Molecular Ecology. 20(6):1248-1262. (Featured in “Perspectives”)

[4] Clark, J.S., D. Bell, C. Chu, B. Courbaud, M. Dietze, M. Hersh, J. Hille Ris Lambers, I. Ibanez, S. LaDeau, S. McMahon, J. Metcalf, J. Mohan, E. Moran, L. Pangle, S. Pearson, C. Salk, Z. Shen, D. Valle, P. Wyckoff.  2010. High dimensional coexistence based on individual variation: a synthesis of evidence.  Ecological Monographs. 80 (4):569-608.

[3] Clark, J.S., D. Bell, M. Dietze, M. Hersh, I. Ibanez, S.L. LaDeau, S. McMahon, J. Metcalf, E. Moran, L. Pangle, M. Wolosin.  2010.  Models for demography of plant populations.  In The Oxford Handbook of Applied Bayesian Analysis.  Ed. A. O’Hagan & M. West.  Oxford University Press.  New York.  Pg. 403-481.

[2] McMahon, S. M., M. C. Dietze, M. H. Hersh, E. V. Moran, and J. S. Clark.  2009.  A predictive framework to understand forest  responses to global change.   In The Year in Ecology and Conservation Biology.  Annals of the New York Academy of Sciences. Pg.        221-236

[1] Moran, E.V., and V.A. Funk. 2006.  A revision of Erato (Compositae; tribe Liabeae). Systematic Botany, 31(3):597-609. 

In Progress: