------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
GeoModels
GeoModels is an R package designed for geostatistical analysis (Gaussian and non-Gaussian) of spatial and spatio-temporal data, including large datasets. It provides fast random field simulation; inference via standard likelihood or a composite weighted pairwise likelihood; prediction via local best linear unbiased predictors; and flexible covariance models on Euclidean spaces and spheres. It also includes tools for plotting, diagnostics, and handling a variety of marginal distributions. CRAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
MTest
MTest is an R package for detecting multicollinearity using bootstrap methods. It implements Klein’s rule and the Variance Inflation Factor (VIF) rule by resampling (“pairs bootstrap”) to provide empirical significance levels. It is suited for users fitting regression models who need rigorous statistical support to check predictor multicollinearity. CRAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
clusEvol
clusEvol allows the analysis of cluster evolution over time. Essentially, it lets you re-insert present instances of an object into past datasets to explore how that object and its neighbors have evolved up to now. Useful for exploratory what-if analyses, cluster dynamics, and temporal clustering behavior. CRAN
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
mtest-py
mtest-py is the Python implementation of a bootstrap-based procedure to detect and quantify multicollinearity. It includes rules like VIF and Klein’s rule; works with linear models; supports multiple predictors; returns observed and bootstrap-based distributions; and overall is suited for research and applied work where one needs robust evidence of multicollinearity. PyPI
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------