1. Sung, J.H., Microphysiological systems for modeling gut-organ interaction. BIOCELL, 2024. 48(8): p. 1145--1153.
2. Seo, G.M., et al., Development of in vitro model of exosome transport in microfluidic gut-brain axis-on-a-chip. Lab Chip, 2024. 24(19): p. 4581-4593.
3. Kim, R. and J.H. Sung, Microfluidic gut-axis-on-a-chip models for pharmacokinetic-based disease models. Biomicrofluidics, 2024. 18(3): p. 031507.
4. Kim, R. and J.H. Sung, Recent Advances in Gut- and Gut–Organ-Axis-on-a-Chip Models. Advanced Healthcare Materials, 2024. n/a(n/a): p. 2302777.
5. Sung, J.H. and J.J. Kim, Recent advances in in vitro skin-on-a-chip models for drug testing. Expert Opin Drug Metab Toxicol, 2023. 19(5): p. 249-267.
6. Seo, S., et al., Neuro‐Glia‐Vascular‐on‐a‐Chip System to Assess Aggravated Neurodegeneration via Brain Endothelial Cells upon Exposure to Diesel Exhaust Particles. Advanced Functional Materials, 2023. 33(12): p. 2210123.
7. Lee, S.Y.L., Y.; Choi, N.; Kim, H. N.; Kim, B.; Sung, J. H., Development of Gut-mucus chip for intestinal absorption study. Biochip J, 2023. 17: p. 230-243.
8. Kim, J.J.L., N. K.; Ryu, D. E.; Ko, B. H.; Kim, J. H.; Rhee, J, Sung, J. H., Highly porous and rigid, full-thickness human skin model from slime-webbed fiber scaffold. Biotechnology and Bioprocess Engineering, 2023. 28.
9. Sung, J.H., From organ-on-a-chip towards body-on-a-chip. BIOCELL, 2022. 46(5): p. 1177-1180.
10. Park, Y.B., J.H. Sung, and B.S. Kim, Tailoring Network Structure of Photopolymerizable Gelatin Hydrogels as 3D Cell Culture Scaffolds. Polym. Korea, 2022. 46(6): p. 793-798.
11. Lee, S.Y.B., H. J., Choi, H.; Won, J.; Han, J.; Park, S.; Kim, D.; Sung, J. H. , Development of a Pumpless Microfluidic System to Study the Interaction between Gut Microbes and Intestinal Epithelial Cells. Biotechnology and Bioprocess Engineering, 2022. 27: p. 221-233.
12. Lee, H.R. and J.H. Sung, Multiorgan-on-a-chip for realization of gut-skin axis. Biotechnol Bioeng, 2022. 119(9): p. 2590-2601.
13. Sung, J.H., Multi-organ-on-a-chip for pharmacokinetics and toxicokinetic study of drugs. Expert Opin Drug Metab Toxicol, 2021. 17(8): p. 969-986.
14. Lee, Y., et al., Gut-Kidney Axis on Chip for Studying Effects of Antibiotics on Risk of Hemolytic Uremic Syndrome by Shiga Toxin-Producing Escherichia coli. Toxins, 2021. 13(11).
15. Lee, S.Y., et al., Microtechnology-based in vitro models: Mimicking liver function and pathophysiology. Apl Bioengineering, 2021. 5(4).
16. Kim, M.H., et al., Organ-on-a-Chip for Studying Gut-Brain Interaction Mediated by Extracellular Vesicles in the Gut Microenvironment. International Journal of Molecular Sciences, 2021. 22(24): p. 13513.
17. Kim, M.H., D. Kim, and J.H. Sung, A Gut-Brain Axis-on-a-Chip for studying transport across epithelial and endothelial barriers. Journal of Industrial and Engineering Chemistry, 2021. 101: p. 126-134.
18. Jeon, J.W., et al., In vitro hepatic steatosis model based on gut-liver-on-a-chip. Biotechnol Prog, 2021. 37(3): p. e3121.
19. Sung, J.H., A body-on-a-chip (BOC) system for studying gut-liver interaction. Methods Cell Biol, 2020. 158: p. 1-10.
20. Seo, S., et al., Microphysiological systems for recapitulating physiology and function of blood-brain barrier. Biomaterials, 2020. 232: p. 119732.
21. Lee, H.R.S., J. H., Effect of culture condition on cell viability and gel contraction in a microfluidic skin chip. Journal of Industrial Engineering and Chemistry, 2020. 87: p. 60-67.
22. Kwak, B.S., et al., Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue. Biotechnol Bioeng, 2020. 117(6): p. 1853-1863.
23. Jeon, J.W., et al., Three-tissue microphysiological system for studying inflammatory responses in gut-liver Axis. Biomed Microdevices, 2020. 22(4): p. 65.
24. Sung, J.H., et al., Recent Advances in Body-on-a-Chip Systems. Anal Chem, 2019. 91(1): p. 330-351.
25. Sung, J.H., Y. Wang, and M.L. Shuler, Strategies for using mathematical modeling approaches to design and interpret multi-organ microphysiological systems (MPS). APL Bioeng, 2019. 3(2): p. 021501.
26. Sung, J.H., J. Koo, and M.L. Shuler, Mimicking the Human Physiology with Microphysiological Systems (MPS). Biochip J, 2019. 13(2): p. 115-126.
27. Lee, S.H. and J.H. Sung, Gut-on-a-Chip Microphysiological Systems for the Recapitulation of the Gut Microenvironment, in Organ-on-a-Chip Engineered Microenvironments for Safety and Efficacy Testing
. 2019.
28. Lee, S.H., N. Choi, and J.H. Sung, Pharmacokinetic and pharmacodynamic insights from microfluidic intestine-on-a-chip models. Expert Opin Drug Metab Toxicol, 2019. 15(12): p. 1005-1019.
29. Lee, D.W., et al., Construction of pancreas-muscle-liver microphysiological system (MPS) for reproducing glucose metabolism. Biotechnol Bioeng, 2019. 116(12): p. 3433-3445.
30. Sung, J.H., Application of chemical reaction engineering principles to ‘body-on-a-chip’ systems. AIChE J, 2018.
31. Sung, J.H., Pharmacokinetic-based multi-organ chip for recapitulating organ interactions. Methods Cell Biol, 2018. 146: p. 183-197.
32. Song, H.J., Lim H. Y., Chun W., Choi K. C., Lee, T., Sung, J. H., Sung, G. Y., Development of 3D skin-equivalent in a pump-less microfluidic chip. Journal of Industrial Engineering and Chemistry, 2018. 60: p. 355-9.
33. Lee, S.Y. and J.H. Sung, Gut-liver on a chip toward an in vitro model of hepatic steatosis. Biotechnol Bioeng, 2018.
34. Lee, S.H. and J.H. Sung, Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv Healthc Mater, 2018. 7(2).
35. Lee, D.W., N. Choi, and J.H. Sung, A microfluidic chip with gravity-induced unidirectional flow for perfusion cell culture. Biotechnol Prog, 2018.
36. Kwak, B.S., et al., In vitro 3D skin model using gelatin methacrylate hydrogel. J Ind Eng Chem, 2018. 66
: p. 254-261.
37. Yi, B.S., K.Y.; Ha, S.K.; Han, J.; Hoang, H.; Choi, I., Park, S.; Sung, J.H., Three-dimensional in vitro gut model on villi-shaped collagen scaffold. Biochip J, 2017. 11(3).
38. Song, H.J., Lim H. Y., Chun W., Choi K. C., Sung, J. H., Sung, G. Y. , Fabrication of a pumpless, microfluidic skin chip from different collagen sources. J Ind Eng Chem, 2017. 56: p. 375-81.
39. Shim, K.Y., et al., Microfluidic gut-on-a-chip with three-dimensional villi structure. Biomed Microdevices, 2017. 19(2): p. 37.
40. Shim, K.Y., et al., Fabrication of micrometer-scale porous gelatin scaffolds for 3D cell culture. J Ind Eng Chem, 2017.
41. Lee, S.H. and J.H. Sung, Microtechnology-Based Multi-Organ Models. Bioengineering, 2017. 4(2): p. 46.
42. Lee, S.H. and J.H. Sung, Organ-on-a-Chip Technology for Reproducing Multiorgan Physiology. Adv Healthc Mater, 2017. 7(2).
43. Lee, S.H., et al., Hydrogel-Based Three-Dimensional Cell Culture for Tissue Engineering and Organ-on-a-Chip. Biotech Prog, 2017.
44. Lee, S., et al., Construction of 3D multicellular microfluidic chip for an in vitro skin model. Biomed Microdevices, 2017.
45. Lee, H., et al., A pumpless multi-organ-on-a-chip (MOC) combined with a pharmacokinetic-pharmacodynamic (PK-PD) model. Biotechnol Bioeng, 2017. 114(2): p. 432-443.
46. Lee, D.W., et al., 3D gut-liver chip with a PK model for prediction of first-pass metabolism. Biomed Microdevices, 2017. 19(4): p. 100.
47. Choe, A., et al., Microfluidic Gut-liver chip for reproducing the first pass metabolism. Biomed Microdevices, 2017. 19(1): p. 4.
48. Park, Y., et al., Fabrication and characterization of dissolving microneedle arrays for improving skin permeability of cosmetic ingredients. Journal of Industrial and Engineering Chemistry, 2016. 39: p. 121-6.
49. Park, Y., et al., Fabrication of degradable carboxymethyl cellulose (CMC) microneedle with laser writing and replica molding process for enhancement of transdermal drug delivery. Biotechnology and Bioprocess Engineering, 2016. 21: p. 110-8.
50. Lee, S.H., et al., Microtechnology-based organ systems and whole-body models for drug screening. Biotechnol J, 2016. 11(6): p. 746-56.
51. Choi, J.R., et al., Microfluidic assay-based optical measurement techniques for cell analysis: A review of recent progress. Biosens Bioelectron, 2016. 77: p. 227-36.
52. Park, Y., et al., Transdermal Delivery of Cosmetic Ingredients Using Dissolving Polymer Microneedle Arrays. Biotechnology and Bioprocess Engineering, 2015. 20: p. 543-9.
53. Kim, D.S., J.H. Sung, and J.M. Lee, Robust Parameter Estimation for Physiologically Based Pharmacokinetic Model of Tegafur with Dissolution Dynamics. Chemical Engineering Research and Design, 2015. 104: p. 730-9.
54. Chi, M., et al., A microfluidic cell culture device (muFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Biomed Microdevices, 2015. 17(3): p. 9966.
55. Sung, J.H., et al., Using physiologically-based pharmacokinetic-guided "body-on-a-chip" systems to predict mammalian response to drug and chemical exposure. Exp Biol Med (Maywood), 2014. 239(9): p. 1225-39.
56. Lee, J., et al., A microfluidic device for evaluating the dynamics of the metabolism-dependent antioxidant activity of nutrients. Lab Chip, 2014. 14(16): p. 2948-57.
57. Kim, S.H., et al., Three-dimensional intestinal villi epithelium enhances protection of human intestinal cells from bacterial infection by inducing mucin expression. Integr Biol (Camb), 2014. 6(12): p. 1122-31.
58. H., N., et al., Fabrication of DNA-Coated Microneedles for Transdermal DNA Delivery Science of Advanced Materials, 2014. 2014(11): p. 2536-9.
59. Sung, J.H., D. Han, and J.B. Lee, Self-assembled DNA-based giant thrombin nanoparticles for controlled release. Biotechnol J, 2013. 8(2): p. 215-20.
60. Sung, J.H., et al., Microfabricated mammalian organ systems and their integration into models of whole animals and humans. Lab Chip, 2013. 13(7): p. 1201-12.
61. Lee, J.B. and J.H. Sung, Organ-on-a-chip technology and microfluidic whole-body models for pharmacokinetic drug toxicity screening. Biotechnol J, 2013. 8(11): p. 1258-66.
62. Lee, J., et al., Fabrication and characterization of microfluidic liver-on-a-chip using microsomal enzymes. Enzyme Microb Technol, 2013. 53(3): p. 159-64.
63. Kim, S.H., et al., A microfluidic device with 3-d hydrogel villi scaffold to simulate intestinal absorption. J Nanosci Nanotechnol, 2013. 13(11): p. 7220-8.
64. Han, D., et al., Multiplexing enhancement for the detection of multiple pathogen DNA. J Nanosci Nanotechnol, 2013. 13(11): p. 7295-9.
65. Han, D., et al., Aptamer-based microspheres for highly sensitive protein detection using fluorescently-labeled DNA nanostructures. J Nanosci Nanotechnol, 2013. 13(11): p. 7259-63.
66. Sung, J.H. and M.L. Shuler, Microtechnology for mimicking in vivo tissue environment. Ann Biomed Eng, 2012. 40(6): p. 1289-300.
67. Lee, S.H., J.H. Sung, and T.H. Park, Nanomaterial-based biosensor as an emerging tool for biomedical applications. Ann Biomed Eng, 2012. 40(6): p. 1384-97.
68. Lee, S.H., et al., Mimicking the human smell sensing mechanism with an artificial nose platform. Biomaterials, 2012. 33(6): p. 1722-9.
69. Esch, M.B., et al., On chip porous polymer membranes for integration of gastrointestinal tract epithelium with microfluidic 'body-on-a-chip' devices. Biomed Microdevices, 2012. 14(5): p. 895-906.
70. Sung, J.H., et al., Microscale 3-D hydrogel scaffold for biomimetic gastrointestinal (GI) tract model. Lab Chip, 2011. 11(3): p. 389-92.
71. Seker, E., et al., Solving medical problems with BioMEMS. IEEE Pulse, 2011. 2(6): p. 51-9.
72. Sung, J.H. and M.L. Shuler, In vitro microscale systems for systematic drug toxicity study. Bioprocess Biosyst Eng, 2010. 33(1): p. 5-19.
73. Sung, J.H., C. Kam, and M.L. Shuler, A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip, 2010. 10(4): p. 446-55.
74. Sung, J.H., M.B. Esch, and M.L. Shuler, Integration of in silico and in vitro platforms for pharmacokinetic-pharmacodynamic modeling. Expert Opin Drug Metab Toxicol, 2010. 6(9): p. 1063-81.
75. Esch, M.B., J.H. Sung, and M.L. Shuler, Promises, challenges and future directions of microCCAs. J Biotechnol, 2010. 148(1): p. 64-9.
76. Choi, J.R., et al., Investigation of portable in situ fluorescence optical detection for microfluidic 3D cell culture assays. Opt Lett, 2010. 35(9): p. 1374-6.
77. Sung, J.H. and M.L. Shuler, Prevention of air bubble formation in a microfluidic perfusion cell culture system using a microscale bubble trap. Biomed Microdevices, 2009. 11(4): p. 731-8.
78. Sung, J.H. and M.L. Shuler, A micro cell culture analog (microCCA) with 3-D hydrogel culture of multiple cell lines to assess metabolism-dependent cytotoxicity of anti-cancer drugs. Lab Chip, 2009. 9(10): p. 1385-94.
79. Sung, J.H., A. Dhiman, and M.L. Shuler, A combined pharmacokinetic-pharmacodynamic (PK-PD) model for tumor growth in the rat with UFT administration. J Pharm Sci, 2009. 98(5): p. 1885-904.
80. Sung, J.H., et al., Fluorescence optical detection in situ for real-time monitoring of cytochrome P450 enzymatic activity of liver cells in multiple microfluidic devices. Biotechnol Bioeng, 2009. 104(3): p. 516-25.
81. Oh, T.I., et al., Real-time fluorescence detection of multiple microscale cell culture analog devices in situ. Cytometry A, 2007. 71(10): p. 857-65.
82. Sung, J.H., H.J. Ko, and T.H. Park, Piezoelectric biosensor using olfactory receptor protein expressed in Escherichia coli. Biosens Bioelectron, 2006. 21(10): p. 1981-6.
83. Yun, E.S., et al., Electroantennogram Parameters for the Detection of Odorants. Journal of Microbiology and Biotechnology, 2000. 10(6): p. 885-8.