Home page

Linee guida per i tecnici

Risultati di apprendimento espressi in termini di competenza per i tecnici:

Linee guida per i professionali

Risultati di apprendimento espressi in termini di competenza per i professionali:

ALTRI SITI

https://sites.google.com/site/matematicastatisticadinamica/

https://sites.google.com/site/matematicaperbiennio/

https://sites.google.com/site/matematicapertriennio/

https://sites.google.com/site/fisicageogebra/

https://sites.google.com/site/matematicacittadino/

https://www.youtube.com/user/marcellopedone

http://www.geogebratube.org/search/results/uid/UsxDI1dqEN8AAB%40MCG4AAAC%4052cc43236c614

Indicazioni Nazionali per il liceo scientifico

LINEE GENERALI E COMPETENZE

Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari della matematica, sia interni alla disciplina in sé considerata, sia rilevanti per la descrizione e la previsione di fenomeni, in particolare del mondo fisico. Egli saprà inquadrare le varie teorie matematiche studiate nel contesto storico entro cui si sono sviluppate e ne comprenderà il significato concettuale.

Lo studente avrà acquisito una visione storico-critica dei rapporti tra le tematiche principali del pensiero matematico e il contesto filosofico, scientifico e tecnologico. In particolare, avrà acquisito il senso e la portata dei tre principali momenti che caratterizzano la formazione del pensiero matematico: la matematica nella civiltà greca, il calcolo infinitesimale che nasce con la rivoluzione scientifica del Seicento e che porta alla matematizzazione del mondo fisico, la svolta che prende le mosse dal razionalismo illuministico e che conduce alla formazione della matematica moderna e a un nuovo processo di matematizzazione che investe nuovi campi (tecnologia, scienze sociali, economiche, biologiche) e che ha cambiato il volto della conoscenza scientifica.

Di qui i gruppi di concetti e metodi che saranno obiettivo dello studio:

1) gli elementi della geometria euclidea del piano e dello spazio entro cui prendono forma i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, assiomatizzazioni);

2) gli elementi del calcolo algebrico, gli elementi della geometria analitica cartesiana, una buona conoscenza delle funzioni elementari dell’analisi, le nozioni elementari del calcolo differenziale e integrale;

3) gli strumenti matematici di base per lo studio dei fenomeni fisici, con particolare riguardo al calcolo vettoriale e alle equazioni differenziali, in particolare l’equazione di Newton e le sue applicazioni elementari;

4) la conoscenza elementare di alcuni sviluppi della matematica moderna, in particolare degli elementi del calcolo delle probabilità e dell’analisi statistica;

5) il concetto di modello matematico e un’idea chiara della differenza tra la visione della matematizzazione caratteristica della fisica classica (corrispondenza univoca tra matematica e natura) e quello della modellistica (possibilità di rappresentare la stessa classe di fenomeni mediante differenti approcci);

6) costruzione e analisi di semplici modelli matematici di classi di fenomeni, anche utilizzando strumenti informatici per la descrizione e il calcolo;

7) una chiara visione delle caratteristiche dell’approccio assiomatico nella sua forma moderna e delle sue specificità rispetto all’approccio assiomatico della geometria euclidea classica;

8) una conoscenza del principio di induzione matematica e la capacità di saperlo applicare, avendo inoltre un’idea chiara del significato filosofico di questo principio (“invarianza delle leggi del pensiero”), della sua diversità con l’induzione fisica (“invarianza delle leggi dei fenomeni”) e di come esso costituisca un esempio elementare del carattere non strettamente deduttivo del ragionamento matematico.