References for dam methylation from PubMed through 2016
Abdelwaheb C, Ahmed L. Acid pre-adaptation enhances virulence of Salmonella enterica serovar Typhimurium dam mutant. Pathol Biol (Paris). 2009 Jul;57(5):358-62. doi: 10.1016/j.patbio.2008.02.020. PubMed PMID: 18456425.
Abeles,A., Brendler,T., Austin,S., 1993. Evidence of two levels of control of P1 oriR and host oriC replication origins by DNA adenine methylation. J. Bacteriol. 175, 7801-7807.
Abeles,A.L., Austin,S.J., 1987. P1 plasmid replication requires methylated DNA. EMBO J. 6, 3185-3189.
Abeles,A.L., Austin,S.J., 1988. P1 plasmid replication requires Escherichia coli Dam-methylated DNA. Gene 74, 185-186.
Adley,C.C., Bukhari,A.I., 1984. Methylation dependent expression of the mom gene of bacteriophage Mu: deletions downstream from the methylation sites affect expression. Nucleic Acids Res. 12, 3535-3550.
Adhikari S, Curtis PD. DNA methyltransferases and epigenetic regulation in bacteria. FEMS Microbiol Rev. 2016 Sep;40(5):575-91. doi: 10.1093/femsre/fuw023. Review. PubMed PMID: 27476077.
Allamane,S., Jourdes,P., Ratel,D., Vicat,J.M., Dupre,I., Laine,M., Berger,F., Benabid,A.L., Wion,D., 2000. Bacterial DNA methylation and gene transfer efficiency. Biochem. Biophys. Res. Commun. 276, 1261-1264.
Allison,G.E., Angeles,D., Tran-Dinh,N., Verma,N.K., 2002. Complete genomic sequence of SfV, a serotype-converting temperate bacteriophage of Shigella flexneri. J. Bacteriol. 184, 1974-1987.
Aloui A, Chatty A, El May A, Landoulsi A. The effect of methylation on DNA replication in Salmonella enterica serovar typhimurium. C R Biol. 2007 Aug;330(8):576-80. PubMed PMID: 17637438.
Aloui A, Tagourti J, El May A, Joseleau Petit D, Landoulsi A. The effect of methylation on some biological parameters in Salmonella enterica serovar Typhimurium. Pathol Biol (Paris). 2011 Aug;59(4):192-8. doi: 10.1016/j.patbio.2009.03.011. PubMed PMID: 19477083.
Ankri,S., Reyes,O., Leblon,G., 1996. Electrotransformation of highly DNA-restrictive corynebacteria with synthetic DNA. Plasmid 35, 62-66.
Anton BP, Harhay GP, Smith TP, Blom J, Roberts RJ. Comparative Methylome Analysis of the Occasional Ruminant Respiratory Pathogen Bibersteinia trehalosi. PLoS One. 2016 Aug 24;11(8):e0161499. doi: 10.1371/journal.pone.0161499. PubMed PMID: 27556252; PubMed Central PMCID: PMC4996451.
Arraj,J.A., Marinus,M.G., 1983. Phenotypic reversal in dam mutants of Escherichia coli K-12 by a recombinant plasmid containing the dam+ gene. J. Bacteriol. 153, 562-565.
Au,K.G., Welsh,K., Modrich,P., 1992. Initiation of methyl-directed mismatch repair. J. Biol. Chem. 267, 12142-12148.
Auer,B., Schweiger,M., 1984. Evidence that Escherichia coli virus T1 induces a DNA methyltransferase. J. Virol. 49, 588-590.
Aya Castañeda Mdel R, Sarnacki SH, Noto Llana M, López Guerra AG, Giacomodonato MN, Cerquetti MC. Dam methylation is required for efficient biofilm production in Salmonella enterica serovar Enteritidis. Int J Food Microbiol. 2015 Jan 16;193:15-22. doi: 10.1016/j.ijfoodmicro.2014.10.003. PubMed PMID: 25462918.
Bach,T., Skarstad,K., 2004. Re-replication from non-sequesterable origins generates three-nucleoid cells which divide asymmetrically. Mol. Microbiol. 51, 1589-1600.
Backman,K., 1980. A cautionary note on the use of certain restriction endonucleases with methylated substrates. Gene 11, 169-171.
Bahloul,A., Meury,J., Kern,R., Garwood,J., Guha,S., Kohiyama,M., 1996. Co-ordination between membrane oriC sequestration factors and a chromosome partitioning protein, TolC (MukA). Mol. Microbiol. 22, 275-282.
Bakker,A., Smith,D.W., 1989. Methylation of GATC sites is required for precise timing between rounds of DNA replication in Escherichia coli. J. Bacteriol. 171, 5738-5742.
Bale,A., d'Alarcao,M., Marinus,M.G., 1979. Characterization of DNA adenine methylation mutants of Escherichia coli K12. Mutat. Res. 59, 157-165.
Banas,J.A., Ferretti,J.J., Progulske-Fox,A., 1991. Identification and sequence analysis of a methylase gene in Porphyromonas gingivalis. Nucleic Acids Res. 19, 4189-4192.
Bancroft,I., Smith,R.J., 1988. An analysis of restriction endonuclease sites in cyanophages infecting the heterocystous cyanobacteria Anabaena and Nostoc. J. Gen. Virol. 69 ( Pt 3), 739-743.
Bandyopadhyay,R., Sengupta,A., Das,J., 1989. A mutation in the dam gene of Vibrio cholerae: 2-aminopurine sensitivity with intact GATC methylase activity. Biochem. Biophys. Res. Commun. 165, 561-567.
Bandyopadhyay,R., Das,J., 1994. The DNA adenine methyltransferase-encoding gene (dam) of Vibrio cholerae. Gene 140, 67-71.
Baranyi,U., Klein,R., Lubitz,W., Kruger,D.H., Witte,A., 2000. The archaeal halophilic virus-encoded Dam-like methyltransferase M. phiCh1-I methylates adenine residues and complements dam mutants in the low salt environment of Escherichia coli. Mol. Microbiol. 35, 1168-1179.
Barbe,J., Gibert,I., Guerrero,R., 1986. 5-Azacytidine: survival and induction of the SOS response in Escherichia coli K-12. Mutat. Res. 166, 9-16.
Barbeyron,T., Kean,K., Forterre,P., 1984. DNA adenine methylation of GATC sequences appeared recently in the Escherichia coli lineage. J. Bacteriol. 160, 586-590.
Barras,F., Marinus,M.G., 1988. Arrangement of Dam methylation sites (GATC) in the Escherichia coli chromosome. Nucleic Acids Res. 16, 9821-9838.
Barras,F., Marinus,M.G., 1989. The great GATC: DNA methylation in E. coli. Trends Genet. 5, 139-143.
Bayliss CD. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Rev. 2009 May;33(3):504-20. doi: 10.1111/j.1574-6976.2009.00162.x. Review. PubMed PMID: 19222587.
Bebenek,K., Janion,C., 1983. Involvement of the mismatch repair system in base analogue-induced mutagenesis. Mol. Gen. Genet. 191, 276-281.
Bebenek,K., Janion,C., 1985. Ability of base analogs to induce the SOS response: effect of a dam mutation and mismatch repair system. Mol. Gen. Genet. 201, 519-524.
Bell,D.C., Cupples,C.G., 2001. Very-short-patch repair in Escherichia coli requires the dam adenine methylase. J. Bacteriol. 183, 3631-3635.
Belogurov,A.A., Efimova,E.P., Del'ver,E.P., Zavil'gel'skii,G.B., 1987. [Weakening of type I restriction in E. coli: the effect of 2-aminopurine and 5-bromouracil]. Mol. Gen. Mikrobiol. Virusol. 34-40.
Belogurov,A.A., Efimova,E.P., Del'ver,E.P., Zavil'gel'skii,G.B., 1987. [Weakening of type I restriction in E. coli: the effect of dam mutation]. Mol. Gen. Mikrobiol. Virusol. 10-16.
Berenstein,D., Olesen,K., Speck,C., Skovgaard,O., 2002. Genetic organization of the Vibrio harveyi DnaA gene region and analysis of the function of the V. harveyi DnaA protein in Escherichia coli. J. Bacteriol. 184, 2533-2538.
Bergerat,A., Kriebardis,A., Guschlbauer,W., 1989. Preferential site-specific hemimethylation of GATC sites in pBR322 DNA by Dam methyltransferase from Escherichia coli. J. Biol. Chem. 264, 4064-4070.
Bergerat,A., Guschlbauer,W., 1990. The double role of methyl donor and allosteric effector of S-adenosyl-methionine for Dam methylase of E. coli. Nucleic Acids Res. 18, 4369-4375.
Bhakat,K.K., Sudarshana,S.M., Das,J., 1999. The mutK gene of Vibrio cholerae: a new gene involved in DNA mismatch repair. J. Bacteriol. 181, 879-883.
Bidinost,C., Wilderman,P.J., Dorsey,C.W., Actis,L.A., 1999. Analysis of the replication elements of the pMJ101 plasmid from the fish pathogen Vibrio ordalii. Plasmid 42, 20-30.
Blaisdell,B.E., Campbell,A.M., Karlin,S., 1996. Similarities and dissimilarities of phage genomes. Proc. Natl. Acad. Sci. U. S. A 93, 5854-5859.
Blyn,L.B., Braaten,B.A., Low,D.A., 1990. Regulation of pap pilin phase variation by a mechanism involving differential dam methylation states. EMBO J. 9, 4045-4054.
Bogan,J.A., Helmstetter,C.E., 1997. DNA sequestration and transcription in the oriC region of Escherichia coli. Mol. Microbiol. 26, 889-896.
Bochow S, Elliman J, Owens L. Bacteriophage adenine methyltransferase: a life cycle regulator? Modelled using Vibrio harveyi myovirus like. J Appl Microbiol. 2012 Nov;113(5):1001-13. doi: 10.1111/j.1365-2672.2012.05358.x. Review. PubMed PMID: 22681538.
Bolker,M., Wulczyn,G., Kahmann,R., 1988. Methylation-dependent gene expression in phage Mu. Gene 74, 187-188.
Bolker,M., Kahmann,R., 1989. The Escherichia coli regulatory protein OxyR discriminates between methylated and unmethylated states of the phage Mu mom promoter. EMBO J. 8, 2403-2410.
Boonsombat,R., Yeh,S.P., Milne,A., Sandler,S.J., 2006. A novel dnaC mutation that suppresses priB rep mutant phenotypes in Escherichia coli K-12. Mol. Microbiol. 60, 973-983.
Borts,R.H., Leung,W.Y., Kramer,W., Kramer,B., Williamson,M., Fogel,S., Haber,J.E., 1990. Mismatch repair-induced meiotic recombination requires the pms1 gene product. Genetics 124, 573-584.
Boye,E., Lobner-Olesen,A., 1990. The role of dam methyltransferase in the control of DNA replication in E. coli. Cell 62, 981-989.
Boye,E., Marinus,M.G., Lobner-Olesen,A., 1992. Quantitation of Dam methyltransferase in Escherichia coli. J. Bacteriol. 174, 1682-1685.
Braaten,B.A., Blyn,L.B., Skinner,B.S., Low,D.A., 1991. Evidence for a methylation-blocking factor (mbf) locus involved in pap pilus expression and phase variation in Escherichia coli. J. Bacteriol. 173, 1789-1800.
Braaten,B.A., Nou,X., Kaltenbach,L.S., Low,D.A., 1994. Methylation patterns in pap regulatory DNA control pyelonephritis-associated pili phase variation in E. coli. Cell 76, 577-588.
Braun,R.E., Wright,A., 1986. DNA methylation differentially enhances the expression of one of the two E. coli dnaA promoters in vivo and in vitro. Mol. Gen. Genet. 202, 246-250.
Brawer,R., Batista,F.D., Burrone,O.R., Sordelli,D.O., Cerquetti,M.C., 1998. A temperature-sensitive DNA adenine methyltransferase mutant of Salmonella typhimurium. Arch. Microbiol. 169, 530-533.
Brendler,T.G., Abeles,A.L., Reaves,L.D., Austin,S.J., 1991. Unique sequence requirements for the P1 plasmid replication origin. Res. Microbiol. 142, 209-216.
Broadbent SE, Davies MR, van der Woude MW. Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism. Mol Microbiol. 2010 Jul;77(2):337-53. doi: 10.1111/j.1365-2958.2010.07203.x. PubMed PMID: 20487280; PubMed Central PMCID: PMC2909390.
Brooks,J.E., Hattman,S., 1978. In vitro methylation of bacteriophage lambda DNA by wild type (dam+) and mutant (damh) forms of the phage T2 DNA adenine methylase. J. Mol. Biol. 126, 381-394.
Brooks,J.E., Blumenthal,R.M., Gingeras,T.R., 1983. The isolation and characterization of the Escherichia coli DNA adenine methylase (dam) gene. Nucleic Acids Res. 11, 837-851.
Brooks,J.E., Benner,J.S., Heiter,D.F., Silber,K.R., Sznyter,L.A., Jager-Quinton,T., Moran,L.S., Slatko,B.E., Wilson,G.G., Nwankwo,D.O., 1989. Cloning the BamHI restriction modification system. Nucleic Acids Res. 17, 979-997.
Brumbley,S.M., Petrasovits,L.A., Birch,R.G., Taylor,P.W., 2002. Transformation and transposon mutagenesis of Leifsonia xyli subsp. xyli, causal organism of ratoon stunting disease of sugarcane. Mol. Plant Microbe Interact. 15, 262-268.
Brunet YR, Bernard CS, Gavioli M, Lloubès R, Cascales E. An epigenetic switch involving overlapping fur and DNA methylation optimizes expression of a type VI secretion gene cluster. PLoS Genet. 2011 Jul;7(7):e1002205. doi: 10.1371/journal.pgen.1002205. PubMed PMID: 21829382; PubMed Central PMCID: PMC3145626.
Bucci,C., Lavitola,A., Salvatore,P., Del Giudice,L., Massardo,D.R., Bruni,C.B., Alifano,P., 1999. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol. Cell 3, 435-445.
Bujnicki,J.M., Radlinska,M., Zaleski,P., Piekarowicz,A., 2001. Cloning of the Haemophilus influenzae Dam methyltransferase and analysis of its relationship to the Dam methyltransferase encoded by the HP1 phage. Acta Biochim. Pol. 48, 969-983.
Bulanenkova S, Snezhkov E, Nikolaev L, Sverdlov E. Identification and mapping of open chromatin regions within a 140 kb polygenic locus of human chromosome 19 using E. coli Dam methylase. Genetica. 2007 May;130(1):83-92. PubMed PMID: 16897455.
Bulanenkova SS, Kozlova AA, Kotova ES, Snezhkov EV, Azhikina TL, Akopov SB, Nikolaev LG, Sverdlov ED. Dam methylase accessibility as an instrument for analysis of mammalian chromatin structure. Epigenetics. 2011 Sep 1;6(9):1078-84. doi: 10.4161/epi.6.9.16476. PubMed PMID: 21814036.
Bulyk,M.L., Gentalen,E., Lockhart,D.J., Church,G.M., 1999. Quantifying DNA-protein interactions by double-stranded DNA arrays. Nat. Biotechnol. 17, 573-577.
Bur'ianov,I., Zakharenko,V.N., Baev,A.A., 1981. [Isolation, purification and properties of adenine DNA methylase Eco dam]. Dokl. Akad. Nauk SSSR 259, 1492-1495.
Buryanov,Y., Zinoviev,V.V., Vienozhinskis,M.T., Malygin,E.G., Nesterenko,V.F., Popov,S.G., Gorbunov,Y., 1984. Does the DNA methylase Eco dam pair nucleotide sequences to form site- specific duplexes? FEBS Lett. 168, 166-168.
Caillet-Fauquet,P., Maenhaut-Michel,G., Radman,M., 1984. SOS mutator effect in E. coli mutants deficient in mismatch correction. EMBO J. 3, 707-712.
Caillet-Fauquet,P., Maenhaut-Michel,G., 1988. Nature of the SOS mutator activity: genetic characterization of untargeted mutagenesis in Escherichia coli. Mol. Gen. Genet. 213, 491-498.
Calmann,M.A., Marinus,M.G., 2003. Regulated expression of the Escherichia coli dam gene. J. Bacteriol. 185, 5012-5014.
Campbell,J.L., Kleckner,N., 1988. The rate of Dam-mediated DNA adenine methylation in Escherichia coli. Gene 74, 189-190.
Campbell,J.L., Kleckner,N., 1990. E. coli oriC and the dnaA gene promoter are sequestered from dam methyltransferase following the passage of the chromosomal replication fork. Cell 62, 967-979.
Campellone KG, Roe AJ, Løbner-Olesen A, Murphy KC, Magoun L, Brady MJ, Donohue-Rolfe A, Tzipori S, Gally DL, Leong JM, Marinus MG. Increased adherence and actin pedestal formation by dam-deficient enterohaemorrhagic Escherichia coli O157:H7. Mol Microbiol. 2007 Mar;63(5):1468-81. PubMed PMID: 17302821.
Cardon,L.R., Burge,C., Schachtel,G.A., Blaisdell,B.E., Karlin,S., 1993. Comparative DNA sequence features in two long Escherichia coli contigs. Nucleic Acids Res. 21, 3875-3884.
Carraway,M., Youderian,P., Marinus,M.G., 1987. Spontaneous mutations occur near dam recognition sites in a dam- Escherichia coli host. Genetics 116, 343-347.
Carraway,M., Rewinski,C., Wu,T.H., Marinus,M.G., 1988. Specificity of the Dam-directed mismatch repair system of Escherichia coli K-12. Gene 74, 157-158.
Carraway,M., Marinus,M.G., 1993. Repair of heteroduplex DNA molecules with multibase loops in Escherichia coli. J. Bacteriol. 175, 3972-3980.
Charlier,D., Huysveld,N., Roovers,M., Glansdorff,N., 1994. On the role of the Escherichia coli integration host factor (IHF) in repression at a distance of the pyrimidine specific promoter P1 of the carAB operon. Biochimie 76, 1041-1051.
Charlier,D., Gigot,D., Huysveld,N., Roovers,M., Pierard,A., Glansdorff,N., 1995. Pyrimidine regulation of the Escherichia coli and Salmonella typhimurium carAB operons: CarP and integration host factor (IHF) modulate the methylation status of a GATC site present in the control region. J. Mol. Biol. 250, 383-391.
Chatti A, Landoulsi A. GATC sites might regulate virulence of Salmonella typhimurium. Foodborne Pathog Dis. 2008 Oct;5(5):555-7. doi: 10.1089/fpd.2008.0099. PubMed PMID: 18681797.
Chen,D.F., Liu,Q.A., Chen,X.W., Zhao,X.L., Chen,Y.W., 1991. The inhibition of restriction endonuclease PvuII cleavage activity by methylation outside its recognition sequence. Nucleic Acids Res. 19, 5703-5705.
Cheng,S.C., Herman,G., Modrich,P., 1985. Extent of equilibrium perturbation of the DNA helix upon enzymatic methylation of adenine residues. J. Biol. Chem. 260, 191-194.
Citron,M., Velleman,M., Schuster,H., 1989. Three additional operators, Op21, Op68, and Op88, of bacteriophage P1. Evidence for control of the P1 dam methylase by Op68. J. Biol. Chem. 264, 3611-3617.
Collier J. Epigenetic regulation of the bacterial cell cycle. Curr Opin Microbiol. 2009 Dec;12(6):722-9. doi: 10.1016/j.mib.2009.08.005. Review. PubMed PMID: 19783470.
Correnti,J., Munster,V., Chan,T., Woude,M., 2002. Dam-dependent phase variation of Ag43 in Escherichia coli is altered in a seqA mutant. Mol. Microbiol. 44, 521-532.
Cota I, Sánchez-Romero MA, Hernández SB, Pucciarelli MG, García-Del Portillo F, Casadesús J. Epigenetic Control of Salmonella enterica O-Antigen Chain Length: A Tradeoff between Virulence and Bacteriophage Resistance. PLoS Genet. 2015 Nov 19;11(11):e1005667. doi: 10.1371/journal.pgen.1005667. PubMed PMID: 26583926; PubMed Central PMCID: PMC4652898.
Coulby,J.N., Sternberg,N.L., 1988. Characterization of the phage P1 dam gene. Gene 74, 191.
Craig,R.J., Arraj,J.A., Marinus,M.G., 1984. Induction of damage inducible (SOS) repair in dam mutants of Escherichia coli exposed to 2-aminopurine. Mol. Gen. Genet. 194, 539-540.
Cue,D., Lam,H., Dillingham,R.L., Hanson,R.S., Flickinger,M.C., 1997. Genetic manipulation of Bacillus methanolicus, a gram-positive, thermotolerant methylotroph. Appl. Environ. Microbiol. 63, 1406-1420.
Daghfous,D., Chatti,A., Marzouk,B., Landoulsi,A., 2006. Phospholipid changes in seqA and dam mutants of Escherichia coli. C. R. Biol. 329, 271-276.
Dalia AB, Lazinski DW, Camilli A. Characterization of undermethylated sites in Vibrio cholerae. J Bacteriol. 2013 May;195(10):2389-99. doi: 10.1128/JB.02112-12. PubMed PMID: 23504020; PubMed Central PMCID: PMC3650525.
Danese,P.N., Pratt,L.A., Dove,S.L., Kolter,R., 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol. Microbiol. 37, 424-432.
Demidova,G.V., Goncharov,E.K., Tynianova,V.I., 1984. [Comparison of specific recognition sites of adenine and cytosine DNA-methylase of Yersinia Pestis EV 76 C dam and dcm by Escherichia coli methylases]. Biokhimiia. 49, 1594-1597.
Deng H, Yang X, Gao Z. MoS2 nanosheets as an effective fluorescence quencher for DNA methyltransferase activity detection. Analyst. 2015 May 7;140(9):3210-5. doi: 10.1039/c4an02133a. PubMed PMID: 25760806.
Deschavanne,P., Radman,M., 1991. Counterselection of GATC sequences in enterobacteriophages by the components of the methyl-directed mismatch repair system. J. Mol. Evol. 33, 125-132.
Disque-Kochem,C., Eichenlaub,R., 1993. Purification and DNA binding of the D protein, a putative resolvase of the F-factor of Escherichia coli. Mol. Gen. Genet. 237, 206-214.
Dodson,K.W., Berg,D.E., 1989. Factors affecting transposition activity of IS50 and Tn5 ends. Gene 76, 207-213.
Dodson,K.W., Berg,D.E., 1991. A sequence at the inside end of IS50 down regulates transposition. Plasmid 25, 145-148.
Dodson,L.A., Masker,W.E., 1981. In vitro host cell reactivation of alkylated bacteriophage T7 deoxyribonucleic acid by repair-deficient strains of Escherichia coli. J. Bacteriol. 147, 720-727.
Doiron,K.M., Viau,S., Koutroumanis,M., Cupples,C.G., 1996. Overexpression of vsr in Escherichia coli is mutagenic. J. Bacteriol. 178, 4294-4296.
Doolittle,M.M., Sirotkin,K., 1988. Bacteriophage T2 and T4, dam+ and damh and Eco dam+ methylation: preference at different sites. Biochim. Biophys. Acta 949, 240-246.
Doutriaux,M.P., Wagner,R., Radman,M., 1986. Mismatch-stimulated killing. Proc. Natl. Acad. Sci. U. S. A 83, 2576-2578.
Dreiseikelmann,B., Eichenlaub,R., Wackernagel,W., 1979. The effect of differential methylation by Escherichia coli of plasmid DNA and phage T7 and lambda DNA on the cleavage by restriction endonuclease MboI from Moraxella bovis. Biochim. Biophys. Acta 562, 418-428.
Dreiseikelmann,B., Wackernagel,W., 1981. Absence in Bacillus subtilis and Staphylococcus aureus of the sequence- specific deoxyribonucleic acid methylation that is conferred in Escherichia coli K-12 by the dam and dcm enzymes. J. Bacteriol. 147, 259-261.
Dziewit L, Radlinska M. Two novel temperate bacteriophages co-existing in Aeromonas sp. ARM81 - characterization of their genomes, proteomes and DNA methyltransferases. J Gen Virol. 2016 Aug;97(8):2008-22. doi: 10.1099/jgv.0.000504. PubMed PMID: 27184451.
Ebright,R.H., Ebright,Y.W., Pendergrast,P.S., Gunasekera,A., 1990. Conversion of a helix-turn-helix motif sequence-specific DNA binding protein into a site-specific DNA cleavage agent. Proc. Natl. Acad. Sci. U. S. A 87, 2882-2886.
Efimova,E.P., Delver,E.P., Belogurov,A.A., 1988. Alleviation of type I restriction in adenine methylase (dam) mutants of Escherichia coli. Mol. Gen. Genet. 214, 313-316.
Efimova,E.P., Delver,E.P., Belogurov,A.A., 1988. 2-Aminopurine and 5-bromouracil induce alleviation of type I restriction in Escherichia coli: mismatches function as inducing signals? Mol. Gen. Genet. 214, 317-320.
El-Labany,S., Sohanpal,B.K., Lahooti,M., Akerman,R., Blomfield,I.C., 2003. Distant cis-active sequences and sialic acid control the expression of fimB in Escherichia coli K-12. Mol. Microbiol. 49, 1109-1118.
Elsawy H, Chahar S. Increasing DNA substrate specificity of the EcoDam DNA-(adenine N(6))-methyltransferase by site-directed mutagenesis. Biochemistry (Mosc). 2014 Nov;79(11):1262-6. doi: 10.1134/S0006297914110145. PubMed PMID: 25540012.
Enquist,L., Sternberg,N., 1979. In vitro packaging of lambda Dam vectors and their use in cloning DNA fragments. Methods Enzymol. 68, 281-298.
Erova,T.E., Fadl,A.A., Sha,J., Khajanchi,B.K., Pillai,L.L., Kozlova,E.V., Chopra,A.K., 2006. Mutations within the catalytic motif of DNA adenine methyltransferase (Dam) of Aeromonas hydrophila cause the virulence of the Dam-overproducing strain to revert to that of the wild-type phenotype. Infect. Immun. 74, 5763-5772.
Erova,T.E., Pillai,L., Fadl,A.A., Sha,J., Wang,S., Galindo,C.L., Chopra,A.K., 2006. DNA adenine methyltransferase influences the virulence of Aeromonas hydrophila. Infect. Immun. 74, 410-424.
Erova TE, Kosykh VG, Sha J, Chopra AK. DNA adenine methyltransferase (Dam) controls the expression of the cytotoxic enterotoxin (act) gene of Aeromonas hydrophila via tRNA modifying enzyme-glucose-inhibited division protein (GidA). Gene. 2012 May 1;498(2):280-7. doi: 10.1016/j.gene.2012.02.024. PubMed PMID: 22391092; PubMed Central PMCID: PMC3613146.
Ershova A, Rusinov I, Vasiliev M, Spirin S, Karyagina A. Restriction-Modification systems interplay causes avoidance of GATC site in prokaryotic genomes. J Bioinform Comput Biol. 2016 Apr;14(2):1641003. doi: 10.1142/S0219720016410031. PubMed PMID: 26972562.
Evdokimov,A.A., Zinoviev,V.V., Malygin,E.G., Schlagman,S.L., Hattman,S., 2002. Bacteriophage T4 Dam DNA-[N6-adenine]methyltransferase. Kinetic evidence for a catalytically essential conformational change in the ternary complex. J. Biol. Chem. 277, 279-286.
Evdokimov AA, Sclavi B, Zinoviev VV, Malygin EG, Hattman S, Buckle M. Study of bacteriophage T4-encoded Dam DNA (adenine-N6)-methyltransferase binding with substrates by rapid laser UV cross-linking. J Biol Chem. 2007 Sep 7;282(36):26067-76. PubMed PMID: 17630395.
Fang CT, Yi WC, Shun CT, Tsai SF. DNA adenine methylation modulates pathogenicity of Klebsiella pneumoniae genotype K1. J Microbiol Immunol Infect. 2015 Sep 9. pii: S1684-1182(15)00845-2. doi: 10.1016/j.jmii.2015.08.022. PubMed PMID: 26427879.
Falker,S., Schmidt,M.A., Heusipp,G., 2005. DNA methylation in Yersinia enterocolitica: role of the DNA adenine methyltransferase in mismatch repair and regulation of virulence factors. Microbiology 151, 2291-2299.
Fälker S, Schilling J, Schmidt MA, Heusipp G. Overproduction of DNA adenine methyltransferase alters motility, invasion, and the lipopolysaccharide O-antigen composition of Yersinia enterocolitica. Infect Immun. 2007 Oct;75(10):4990-7. PubMed PMID: 17682042; PubMed Central PMCID: PMC2044514.
Farid,A., Refai,M., El Shinawy,M., Badr,H., 1979. Spectrum of Escherichia coli agglutinins in dam's sera, colostrum and calf's sera in Fresian cows and buffaloes in Egypt. Zentralbl. Bakteriol. [Orig. A] 245, 462-468.
Ferullo DJ, Lovett ST. The stringent response and cell cycle arrest in Escherichia coli. PLoS Genet. 2008 Dec;4(12):e1000300. doi: 10.1371/journal.pgen.1000300. PubMed PMID: 19079575; PubMed Central PMCID: PMC2586660.
Fishel,R.A., Siegel,E.C., Kolodner,R., 1986. Gene conversion in Escherichia coli. Resolution of heteroallelic mismatched nucleotides by co-repair. J. Mol. Biol. 188, 147-157.
Forterre,P., Squali,F.Z., Hughes,P., Kohiyama,M., 1984. Studies on the role of dam methylation at the Escherichia coli chromosome replication origin (oriC). Adv. Exp. Med. Biol. 179, 543-549.
Fram,R.J., Cusick,P.S., Wilson,J.M., Marinus,M.G., 1985. Mismatch repair of cis-diamminedichloroplatinum(II)-induced DNA damage. Mol. Pharmacol. 28, 51-55.
Fram,R.J., Cusick,P.S., Marinus,M.G., 1986. Studies on mutagenesis and repair induced by platinum analogs. Mutat. Res. 173, 13-18.
Friedman,K.L., Raghuraman,M.K., Fangman,W.L., Brewer,B.J., 1995. Analysis of the temporal program of replication initiation in yeast chromosomes. J. Cell Sci. Suppl 19, 51-58.
Garcia,L.R., Molineux,I.J., 1995. Incomplete entry of bacteriophage T7 DNA into F plasmid-containing Escherichia coli. J. Bacteriol. 177, 4077-4083.
Garcia,L.R., Molineux,I.J., 1995. Rate of translocation of bacteriophage T7 DNA across the membranes of Escherichia coli. J. Bacteriol. 177, 4066-4076.
Gary,T.P., Colowick,N.E., Mosig,G., 1998. A species barrier between bacteriophages T2 and T4: exclusion, join- copy and join-cut-copy recombination and mutagenesis in the dCTPase genes. Genetics 148, 1461-1473.
Geier,G.E., Modrich,P., 1979. Recognition sequence of the dam methylase of Escherichia coli K12 and mode of cleavage of Dpn I endonuclease. J. Biol. Chem. 254, 1408-1413.
Giacomodonato,M.N., Sarnacki,S.H., Caccuri,R.L., Sordelli,D.O., Cerquetti,M.C., 2004. Host response to a dam mutant of Salmonella enterica serovar enteritidis with a temperature-sensitive phenotype. Infect. Immun. 72, 5498-5501.
Giacomodonato MN, Sarnacki SH, Llana MN, García Cattaneo AS, Uzzau S, Rubino S, Cerquetti MC. Impaired synthesis and secretion of SopA in Salmonella Typhimurium dam mutants. FEMS Microbiol Lett. 2009 Mar;292(1):71-7. doi: 10.1111/j.1574-6968.2008.01473.x. PubMed PMID: 19191875.
Giacomodonato MN, Sarnacki SH, Llana MN, Cerquetti MC. Dam and its role in pathogenicity of Salmonella enterica. J Infect Dev Ctries. 2009 Aug 30;3(7):484-90. Review. PubMed PMID: 19762965.
Giacomodonato MN, Llana MN, Castañeda Mdel R, Buzzola F, García MD, Calderón MG, Sarnacki SH, Cerquetti MC. Dam methylation regulates the expression of SPI-5-encoded sopB gene in Salmonella enterica serovar Typhimurium. Microbes Infect. 2014 Aug;16(8):615-22. doi: 10.1016/j.micinf.2014.03.009. PubMed PMID: 24947562.
Chatt A, Aloui M, Tagourti J, Mihoub M, Landoulsi A. Novobiocin sensitivity of Salmonella typhimurium dam and/or seqA mutants. Pol J Microbiol. 2014;63(1):51-6. PubMed PMID: 25033662.
Glickman,B., van den,E.P., Radman,M., 1978. Induced mutagenesis in dam- mutants of Escherichia coli: a role for 6-methyladenine residues in mutation avoidance. Mol. Gen. Genet. 163, 307-312.
Glickman,B.W., 1979. Spontaneous mutagenesis in Escherichia coli strains lacking 6- methyladenine residues in their DNA: an altered mutational spectrum in dam- mutants. Mutat. Res. 61, 153-162.
Glickman,B.W., Radman,M., 1980. Escherichia coli mutator mutants deficient in methylation-instructed DNA mismatch correction. Proc. Natl. Acad. Sci. U. S. A 77, 1063-1067.
Gomez-Eichelmann,M.C., Alvarez,G., 1985. Genetic expression and gyrase dependence of methylated and undermethylated DNA in Escherichia coli. Biochim. Biophys. Acta 825, 335-338.
Gottschling,D.E., 1992. Telomere-proximal DNA in Saccharomyces cerevisiae is refractory to methyltransferase activity in vivo. Proc. Natl. Acad. Sci. U. S. A 89, 4062-4065.
Goze,A., Sedgwick,S.G., 1978. Increased UV-inducibility of SOS functions in a dam-3 mutant of Escherichia coli K12 uvrA. Mutat. Res. 52, 323-331.
Grafstrom,R.H., Amsterdam,A., Zachariasewycz,K., 1988. In vivo studies of repair of 2-aminopurine in Escherichia coli. J. Bacteriol. 170, 3485-3492.
Graham,M.W., Larkin,P.J., 1995. Adenine methylation at dam sites increases transient gene expression in plant cells. Transgenic Res. 4, 324-331.
Guha,S., Guschlbauer,W., 1992. Improved plasmids containing the Escherichia coli dam gene under the control of the tac promoter. Biochim. Biophys. Acta 1132, 309-310.
Guha,S., Guschlbauer,W., 1992. Expression of Escherichia coli dam gene in Bacillus subtilis provokes DNA damage response: N6-methyladenine is removed by two repair pathways. Nucleic Acids Res. 20, 3607-3615.
Gunasekera,A., Ebright,Y.W., Ebright,R.H., 1992. DNA sequence determinants for binding of the Escherichia coli catabolite gene activator protein. J. Biol. Chem. 267, 14713-14720.
Gunn,J.S., Stein,D.C., 1997. The Neisseria gonorrhoeae S.NgoVIII restriction/modification system: a type IIs system homologous to the Haemophilus parahaemolyticus HphI restriction/modification system. Nucleic Acids Res. 25, 4147-4152.
Guo,Q., Lu,M., Kallenbach,N.R., 1995. Effect of hemimethylation and methylation of adenine on the structure and stability of model DNA duplexes. Biochemistry 34, 16359-16364.
Guschlbauer,W., 1988. The DNA and S-adenosylmethionine-binding regions of EcoDam and related methyltransferases. Gene 74, 211-214.
Guschlbauer,W., 1996. "Small is beautiful": major modifications in DNA structure or dynamics by small substituents or ligands. Acta Biochim. Pol. 43, 77-94.
Guyot,J.B., Grassi,J., Hahn,U., Guschlbauer,W., 1993. The role of the preserved sequences of Dam methylase. Nucleic Acids Res. 21, 3183-3190.
Haagmans,W., van der,W.M., 2000. Phase variation of Ag43 in Escherichia coli: Dam-dependent methylation abrogates OxyR binding and OxyR-mediated repression of transcription. Mol. Microbiol. 35, 877-887.
Haas,D., Riess,G., 1983. Spontaneous deletions of the chromosome-mobilizing plasmid R68.45 in Pseudomonas aeruginosa PAO. Plasmid 9, 42-52.
Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Mol Cell. 2015 Aug 20;59(4):685-97. doi: 10.1016/j.molcel.2015.07.008. PubMed PMID: 26257285; PubMed Central PMCID: PMC4553207.
Hale,W.B., van der Woude,M.W., Low,D.A., 1994. Analysis of nonmethylated GATC sites in the Escherichia coli chromosome and identification of sites that are differentially methylated in response to environmental stimuli. J. Bacteriol. 176, 3438-3441.
Hale,W.B., van der Woude,M.W., Braaten,B.A., Low,D.A., 1998. Regulation of uropathogenic Escherichia coli adhesin expression by DNA methylation. Mol. Genet. Metab 65, 191-196.
Halford,S.E., Lovelady,B.M., McCallum,S.A., 1986. Relaxed specificity of the EcoRV restriction endonuclease. Gene 41, 173-181.
Hall,R.M., 1990. The DNA adenine methyltransferase (dam+) gene of bacteriophage T4 reverses the mutator phenotype of an Escherichia coli dam mutant. J. Bacteriol. 172, 2812-2813.
Harel,J., Daigle,F., Forget,C., Tessier,M.C., Crost,C., Martin,C., 2000. Phase variation of F165(1) (Prs-like) fimbriae from Escherichia coli causing septicaemia in animals. Can. J. Microbiol. 46, 1101-1107.
Harris,J.E., Chater,K.F., Bruton,C.J., Piret,J.M., 1983. The restriction mapping of c gene deletions in Streptomyces bacteriophage phi C31 and their use in cloning vector development. Gene 22, 167-174.
Harshey,R.M., 1984. Transposition without duplication of infecting bacteriophage Mu DNA. Nature 311, 580-581.
Hass MR, Liow HH, Chen X, Sharma A, Inoue YU, Inoue T, Reeb A, Martens A, Fulbright M, Raju S, Stevens M, Boyle S, Park JS, Weirauch MT, Brent MR, Kopan R. SpDamID: Marking DNA Bound by Protein Complexes Identifies Notch-Dimer Responsive Enhancers. Mol Cell. 2015 Aug 20;59(4):685-97. doi: 10.1016/j.molcel.2015.07.008. PubMed PMID: 26257285; PubMed Central PMCID: PMC4553207.
Hattman,S., Brooks,J.E., Masurekar,M., 1978. Sequence specificity of the P1 modification methylase (M.Eco P1) and the DNA methylase (M.Eco dam) controlled by the Escherichia coli dam gene. J. Mol. Biol. 126, 367-380.
Hattman,S., 1982. DNA methyltransferase-dependent transcription of the phage Mu mom gene. Proc. Natl. Acad. Sci. U. S. A 79, 5518-5521.
Hattman,S., Ives,J., 1984. S1 nuclease mapping of the phage Mu mom gene promoter: a model for the regulation of mom expression. Gene 29, 185-198.
Hattman,S., Wilkinson,J., Swinton,D., Schlagman,S., Macdonald,P.M., Mosig,G., 1985. Common evolutionary origin of the phage T4 dam and host Escherichia coli dam DNA-adenine methyltransferase genes. J. Bacteriol. 164, 932-937.
Hattman,S., 1989. The Escherichia coli MutH protein is not the repressor of the bacteriophage Mu mom operon. Gene 79, 381-383.
Hattman,S., Sun,W., 1997. Escherichia coli OxyR modulation of bacteriophage Mu mom expression in dam+ cells can be attributed to its ability to bind hemimethylated Pmom promoter DNA. Nucleic Acids Res. 25, 4385-4388.
Heisig,P., Kahmann,R., 1986. The sequence and mom-transactivation function of the C gene of bacteriophage Mu. Gene 43, 59-67.
Heithoff,D.M., Sinsheimer,R.L., Low,D.A., Mahan,M.J., 1999. An essential role for DNA adenine methylation in bacterial virulence. Science 284, 967-970.
Heithoff DM, House JK, Thomson PC, Mahan MJ. Development of a Salmonella cross-protective vaccine for food animal production systems. Vaccine. 2015 Jan 1;33(1):100-7. doi: 10.1016/j.vaccine.2014.11.012. PubMed PMID: 25448106.
Heitman,J., Model,P., 1987. Site-specific methylases induce the SOS DNA repair response in Escherichia coli. J. Bacteriol. 169, 3243-3250.
Hemavathy,K.C., Nagaraja,V., 1995. DNA methylation in mycobacteria: absence of methylation at GATC (Dam) and CCA/TGG (Dcm) sequences. FEMS Immunol. Med. Microbiol. 11, 291-296.
Henderson,I.R., Meehan,M., Owen,P., 1997. A novel regulatory mechanism for a novel phase-variable outer membrane protein of Escherichia coli. Adv. Exp. Med. Biol. 412, 349-355.
Henderson,I.R., Owen,P., 1999. The major phase-variable outer membrane protein of Escherichia coli structurally resembles the immunoglobulin A1 protease class of exported protein and is regulated by a novel mechanism involving Dam and oxyR. J. Bacteriol. 181, 2132-2141.
Herman,G.E., Modrich,P., 1981. Escherichia coli K-12 clones that overproduce dam methylase are hypermutable. J. Bacteriol. 145, 644-646.
Herman,G.E., Modrich,P., 1982. Escherichia coli dam methylase. Physical and catalytic properties of the homogeneous enzyme. J. Biol. Chem. 257, 2605-2612.
Hernday,A., Braaten,B., Low,D., 2004. The intricate workings of a bacterial epigenetic switch. Adv. Exp. Med. Biol. 547, 83-89.
Hernday,A.D., Braaten,B.A., Low,D.A., 2003. The mechanism by which DNA adenine methylase and PapI activate the pap epigenetic switch. Mol. Cell 12, 947-957.
Herrick,J., Kern,R., Guha,S., Landoulsi,A., Fayet,O., Malki,A., Kohiyama,M., 1994. Parental strand recognition of the DNA replication origin by the outer membrane in Escherichia coli. EMBO J. 13, 4695-4703.
Heusipp G, Fälker S, Schmidt MA. DNA adenine methylation and bacterial pathogenesis. Int J Med Microbiol. 2007 Feb;297(1):1-7. Review. PubMed PMID: 17126598.
Hoekstra,M.F., Malone,R.E., 1986. Excision repair functions in Saccharomyces cerevisiae recognize and repair methylation of adenine by the Escherichia coli dam gene. Mol. Cell Biol. 6, 3555-3558.
Hofmann N, Wurm R, Wagner R. The E. coli anti-sigma factor Rsd: studies on the specificity and regulation of its expression. PLoS One. 2011 May 6;6(5):e19235. doi: 10.1371/journal.pone.0019235. PubMed PMID: 21573101; PubMed Central PMCID: PMC3089606.
Hogema,B.M., Arents,J.C., Inada,T., Aiba,H., van Dam,K., Postma,P.W., 1997. Catabolite repression by glucose 6-phosphate, gluconate and lactose in Escherichia coli. Mol. Microbiol. 24, 857-867.
Hoheisel,J.D., Nizetic,D., Lehrach,H., 1989. Control of partial digestion combining the enzymes dam methylase and MboI. Nucleic Acids Res. 17, 9571-9582.
Hong L, Wan J, Zhang X, Wang G. DNA-gold nanoparticles network based electrochemical biosensors for DNA MTase activity. Talanta. 2016 May 15;152:228-35. doi: 10.1016/j.talanta.2016.01.026. PubMed PMID: 26992515.
Holmes,M.L., Nuttall,S.D., Dyall-Smith,M.L., 1991. Construction and use of halobacterial shuttle vectors and further studies on Haloferax DNA gyrase. J. Bacteriol. 173, 3807-3813.
Horiuchi,T., Fujimura,Y., 1995. Recombinational rescue of the stalled DNA replication fork: a model based on analysis of an Escherichia coli strain with a chromosome region difficult to replicate. J. Bacteriol. 177, 783-791.
Horton,J.R., Liebert,K., Hattman,S., Jeltsch,A., Cheng,X., 2005. Transition from nonspecific to specific DNA interactions along the substrate-recognition pathway of dam methyltransferase. Cell 121, 349-361.
Horton,J.R., Liebert,K., Bekes,M., Jeltsch,A., Cheng,X., 2006. Structure and substrate recognition of the Escherichia coli DNA adenine methyltransferase. J. Mol. Biol. 358, 559-570.
Horton JR, Zhang X, Blumenthal RM, Cheng X. Structures of Escherichia coli DNA adenine methyltransferase (Dam) in complex with a non-GATC sequence: potential implications for methylation-independent transcriptional repression. Nucleic Acids Res. 2015 Apr 30;43(8):4296-308. doi: 10.1093/nar/gkv251. PubMed PMID: 25845600; PubMed Central PMCID: PMC4417163.
Howe GT, Horvath DP, Dharmawardhana P, Priest HD, Mockler TC, Strauss SH. Extensive Transcriptome Changes During Natural Onset and Release of Vegetative Bud Dormancy in Populus. Front Plant Sci. 2015 Dec 17;6:989. doi: 10.3389/fpls.2015.00989. PubMed PMID: 26734012; PubMed Central PMCID: PMC4681841.
Hsu,M.Y., Inouye,M., Inouye,S., 1990. Retron for the 67-base multicopy single-stranded DNA from Escherichia coli: a potential transposable element encoding both reverse transcriptase and Dam methylase functions. Proc. Natl. Acad. Sci. U. S. A 87, 9454-9458.
Hughes,J.A., Brown,L.R., Ferro,A.J., 1987. Expression of the cloned coliphage T3 S-adenosylmethionine hydrolase gene inhibits DNA methylation and polyamine biosynthesis in Escherichia coli. J. Bacteriol. 169, 3625-3632.
Hughes,P., Squali-Houssaini,F., Forterre,P., Kohiyama,M., 1984. In vitro replication of a dam methylated and non-methylated ori-C plasmid. J. Mol. Biol. 176, 155-159.
Hughes,P., Landoulsi,A., Kern,R., Kohiyama,M., 1989. Dam methylated and hemimethylated oriC plasmids are replicated symmetrically; a novel and general test of replication symmetry. Mol. Gen. Genet. 217, 278-280.
Hulsmann,K.H., Bergerat-Coulaud,A., Hahn,U., 1990. E. coli Dam activity in Hepes buffer asks for a new unit definition. Nucleic Acids Res. 18, 7189.
Hulsmann,K.H., Quaas,R., Georgalis,Y., Saenger,W., Hahn,U., 1991. High-level expression of a semisynthetic dam gene in Escherichia coli. Gene 98, 83-88.
Humphery-Smith,I., 1999. Replication-induced protein synthesis and its importance to proteomics. Electrophoresis 20, 653-659.
Jakomin M, Chessa D, Bäumler AJ, Casadesús J. Regulation of the Salmonella enterica std fimbrial operon by DNA adenine methylation, SeqA, and HdfR. J Bacteriol. 2008 Nov;190(22):7406-13. doi: 10.1128/JB.01136-08. PubMed PMID: 18805972; PubMed Central PMCID: PMC2576648.
James AE, Rogovskyy AS, Crowley MA, Bankhead T. Characterization of a DNA Adenine Methyltransferase Gene of Borrelia hermsii and Its Dispensability for Murine Infection and Persistence. PLoS One. 2016 May 19;11(5):e0155798. doi: 10.1371/journal.pone.0155798. PubMed PMID: 27195796; PubMed Central PMCID: PMC4873019.
Janion,C., 1982. Effect of bacterial host repair systems on the viability of hydroxylamine and methyl methanesulfonate treated T4 and lambda bacteriophages. Mol. Gen. Genet. 186, 419-426.
Janion,C., Bebenek,K., Plewako,S., 1987. Are Escherichia coli dam- as compared to dam+ hypermutable by base analogs? Acta Biochim. Pol. 34, 183-193.
Janion,C., Plewako,S., Bebenek,K., Sledziewska-Gojska,E., 1989. Influence of dam and mismatch repair system on mutagenic and SOS-inducing activity of methyl methanesulfonate in Escherichia coli. Mutat. Res. 210, 15-22.
Jansen,R., Ledley,F.D., 1990. Disruption of phase during PCR amplification and cloning of heterozygous target sequences. Nucleic Acids Res. 18, 5153-5156.
Jeltsch,A., Christ,F., Fatemi,M., Roth,M., 1999. On the substrate specificity of DNA methyltransferases. adenine-N6 DNA methyltransferases also modify cytosine residues at position N4. J. Biol. Chem. 274, 19538-19544.
Jensen,R.B., Dam,M., Gerdes,K., 1994. Partitioning of plasmid R1. The parA operon is autoregulated by ParR and its transcription is highly stimulated by a downstream activating element. J. Mol. Biol. 236, 1299-1309.
Jeon TJ. DNA adenine methylation of sams1 gene in symbiont-bearing Amoeba proteus. J Microbiol. 2008 Oct;46(5):564-70. doi: 10.1007/s12275-008-0129-8. PubMed PMID: 18974959.
Jiang B, Wei Y, Xu J, Yuan R, Xiang Y. Coupling hybridization chain reaction with DNAzyme recycling for enzyme-free and dual amplified sensitive fluorescent detection of methyltransferase activity. Anal Chim Acta. 2017 Jan 1;949:83-88. doi: 10.1016/j.aca.2016.11.003. PubMed PMID: 27876150.
Jonczyk,P., Hines,R., Smith,D.W., 1989. The Escherichia coli dam gene is expressed as a distal gene of a new operon. Mol. Gen. Genet. 217, 85-96.
Jones,M., Wagner,R., 1981. N-Methyl-N'-nitro-N-nitrosoguanidine sensitivity of E. coli mutants deficient in DNA methylation and mismatch repair. Mol. Gen. Genet. 184, 562-563.
Kahmann,R., Seiler,A., Wulczyn,F.G., Pfaff,E., 1985. The mom gene of bacteriophage mu: a unique regulatory scheme to control a lethal function. Gene 39, 61-70.
Kaminska R, van der Woude MW. Establishing and maintaining sequestration of Dam target sites for phase variation of agn43 in Escherichia coli. J Bacteriol. 2010 Apr;192(7):1937-45. doi: 10.1128/JB.01629-09. PubMed PMID: 20118257; PubMed Central PMCID: PMC2838033.
Kan,T.N., Li,L., Chandrasegaran,S., 1992. Cloning, sequencing, overproduction, and purification of M. CviBI (GANTC) methyltransferase from Chlorella virus NC-1A [corrected] [published erratum appears in Gene 1993 Apr 15;126(1):159]. Gene 121, 1-7.
Kang,S., Lee,H., Han,J.S., Hwang,D.S., 1999. Interaction of SeqA and Dam methylase on the hemimethylated origin of Escherichia coli chromosomal DNA replication. J. Biol. Chem. 274, 11463-11468.
Karlin,S., Macken,C., 1991. Assessment of inhomogeneities in an E. coli physical map. Nucleic Acids Res. 19, 4241-4246.
Karran,P., Marinus,M.G., 1982. Mismatch correction at O6-methylguanine residues in E. coli DNA. Nature 296, 868-869.
Kataoka,T., Wachi,M., Nakamura,J., Gayama,S., Yamasaki,M., Nagai,K., 1993. Fully methylated oriC with negative superhelicity forms an oriC- membrane complex before initiation of chromosome replication. Biochem. Biophys. Res. Commun. 194, 1420-1426.
Katayama,T., Akimitsu,N., Mizushima,T., Miki,T., Sekimizu,K., 1997. Overinitiation of chromosome replication in the Escherichia coli dnaAcos mutant depends on activation of oriC function by the dam gene product. Mol. Microbiol. 25, 661-670.
Kelleher,J.E., Raleigh,E.A., 1994. Response to UV damage by four Escherichia coli K-12 restriction systems. J. Bacteriol. 176, 5888-5896.
Kessler,C., Neumaier,P.S., Wolf,W., 1985. Recognition sequences of restriction endonucleases and methylases--a review. Gene 33, 1-102.
Khatoon,H., Bukhari,A.I., 1978. Bacteriophage Mu-induced modification of DNA is dependent upon a host function. J. Bacteriol. 136, 423-428.
Kholti,A., Charlier,D., Gigot,D., Huysveld,N., Roovers,M., Glansdorff,N., 1998. pyrH-encoded UMP-kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J. Mol. Biol. 280, 571-582.
Kimura,T., Asai,T., Imai,M., Takanami,M., 1989. Methylation strongly enhances DNA bending in the replication origin region of the Escherichia coli chromosome. Mol. Gen. Genet. 219, 69-74.
Kladde,M.P., Simpson,R.T., 1994. Positioned nucleosomes inhibit Dam methylation in vivo. Proc. Natl. Acad. Sci. U. S. A 91, 1361-1365.
Klysik,J., 1996. Both an altered DNA structure and cellular proteins are involved in protecting a triplex forming an oligopurine-rich sequence from Dam methylation in E. coli. Biochem. Genet. 34, 165-178.
Koch B, Ma X, Løbner-Olesen A. Replication of Vibrio cholerae chromosome I in Escherichia coli: dependence on dam methylation. J Bacteriol. 2010 Aug;192(15):3903-14. doi: 10.1128/JB.00311-10. PubMed PMID: 20511501; PubMed Central PMCID: PMC2916376.
Kolek J, Sedlar K, Provaznik I, Patakova P. Dam and Dcm methylations prevent gene transfer into Clostridium pasteurianum NRRL B-598: development of methods for electrotransformation, conjugation, and sonoporation. Biotechnol Biofuels. 2016 Jan 20;9:14. doi: 10.1186/s13068-016-0436-y. PubMed PMID: 26793273; PubMed Central PMCID: PMC4719659.
Kossykh,V.G., Schlagman,S.L., Hattman,S., 1993. Conserved sequence motif DPPY in region IV of the phage T4 Dam DNA-[N6-adenine]-methyltransferase is important for S-adenosyl-L-methionine binding. Nucleic Acids Res. 21, 4659-4662.
Kossykh,V.G., Schlagman,S.L., Hattman,S., 1995. Phage T4 DNA [N6-adenine]methyltransferase. Overexpression, purification, and characterization. J. Biol. Chem. 270, 14389-14393.
Kossykh,V.G., Schlagman,S.L., Hattman,S., 1995. Studies on the function of conserved sequence motifs in the T4 Dam-[N6-adenine] and EcoRII [C5-cytosine] DNA methyltransferases. Gene %19;157, 125-126.
Kossykh,V.G., Schlagman,S.L., Hattman,S., 1997. Comparative studies of the phage T2 and T4 DNA (N6-adenine)methyltransferases: amino acid changes that affect catalytic activity. J. Bacteriol. 179, 3239-3243.
Kraczkiewicz-Dowjat,A., Fishel,R., 1990. recB recC-dependent processing of heteroduplex DNA stimulates recombination of an adjacent gene in Escherichia coli. J. Bacteriol. 172, 172-178.
Krais AM, Cornelius MG, Schmeiser HH. Genomic N(6)-methyladenine determination by MEKC with LIF. Electrophoresis. 2010 Oct;31(21):3548-51. doi: 10.1002/elps.201000357. PubMed PMID: 20925053.
Kriebardis,A., Guschlbauer,W., 1987. dam methylase from E. coli. Circular dichroism investigations of the secondary structure and influence of S-adenosylmethionine. FEBS Lett. 213, 297-300.
Kruger,D.H., Schroeder,C., Reuter,M., Bogdarina,I.G., Buryanov,Y.I., Bickle,T.A., 1985. DNA methylation of bacterial viruses T3 and T7 by different DNA methylases in Escherichia coli K12 cells. Eur. J. Biochem. 150, 323-330.
Kubicek-Sutherland JZ, Heithoff DM, Ersoy SC, Shimp WR, Mahan MJ. Immunization with a DNA adenine methylase over-producing Yersinia pseudotuberculosis vaccine confers robust cross-protection against heterologous pathogenic serotypes. Vaccine. 2014 Mar 14;32(13):1451-9. doi: 10.1016/j.vaccine.2014.01.036. PubMed PMID: 24508035.
Kucherer,C., Lother,H., Kolling,R., Schauzu,M.A., Messer,W., 1986. Regulation of transcription of the chromosomal dnaA gene of Escherichia coli. Mol. Gen. Genet. 205, 115-121.
Kur,J., Koob,M., Burkiewicz,A., Szybalski,W., 1992. A novel method for converting common restriction enzymes into rare cutters: integration host factor-mediated Achilles' cleavage (IHF-AC). Gene 110, 1-7.
Kurokawa,K., Nishida,S., Emoto,A., Sekimizu,K., Katayama,T., 1999. Replication cycle-coordinated change of the adenine nucleotide-bound forms of DnaA protein in Escherichia coli. EMBO J. 18, 6642-6652.
Kwak,J., Jiang,H., Kendrick,K.E., 2002. Transformation using in vivo and in vitro methylation in Streptomyces griseus. FEMS Microbiol. Lett. 209, 243-248.
Kyrion,G., Liu,K., Liu,C., Lustig,A.J., 1993. RAP1 and telomere structure regulate telomere position effects in Saccharomyces cerevisiae. Genes Dev. 7, 1146-1159.
Labbe,D., Holtke,H.J., Lau,P.C., 1990. Cloning and characterization of two tandemly arranged DNA methyltransferase genes of Neisseria lactamica: an adenine-specific M.NlaIII and a cytosine-type methylase. Mol. Gen. Genet. 224, 101-110.
Lai,C.Y., Baumann,P., 1992. Genetic analysis of an aphid endosymbiont DNA fragment homologous to the rnpA-rpmH-dnaA-dnaN-gyrB region of eubacteria. Gene 113, 175-181.
Lai QQ, Liu MD, Gu CC, Nie HG, Xu XJ, Li ZH, Yang Z, Huang SM. A novel label-free fluorescence strategy for methyltransferase activity assay based on dsDNA-templated copper nanoparticles coupled with an endonuclease-assisted signal transduction system. Analyst. 2016 Feb 21;141(4):1383-9. doi: 10.1039/c5an02123e. PubMed PMID: 26764536.
Lambert,G.R., Carr,N.G., 1984. Resistance of DNA from filamentous and unicellular cyanobacteria to restriction endonuclease cleavage. Biochim. Biophys. Acta 781, 45-55.
Landoulsi,A., Hughes,P., Kern,R., Kohiyama,M., 1989. dam methylation and the initiation of DNA replication on oriC plasmids. Mol. Gen. Genet. 216, 217-223.
Landoulsi,A., Malki,A., Kern,R., Kohiyama,M., Hughes,P., 1990. The E. coli cell surface specifically prevents the initiation of DNA replication at oriC on hemimethylated DNA templates. Cell 63, 1053-1060.
Lauster,R., Kriebardis,A., Guschlbauer,W., 1987. The GATATC-modification enzyme EcoRV is closely related to the GATC-recognizing methyltransferases DpnII and dam from E. coli and phage T4. FEBS Lett. 220, 167-176.
Lebrun,E., Fourel,G., Defossez,P.A., Gilson,E., 2003. A methyltransferase targeting assay reveals silencer-telomere interactions in budding yeast. Mol. Cell Biol. 23, 1498-1508.
Lee,A.S., Wells,S., Delegeane,A.M., 1986. Methylation analysis of a plasmid containing a mammalian cell cycle regulatory sequence after transient transfection into the host cell. Biochem. Biophys. Res. Commun. 135, 942-949.
Leitner,G., Gutman,M., Heller,E.D., Yonash,N., Cahaner,A., 1994. Parental effect on the humoral immune response to Escherichia coli and Newcastle disease virus in young broiler chicks. Poult. Sci. 73, 1534-1541.
Lema,M.W., Brown,A., 1996. Dam-like methylation in legionellae. Curr. Microbiol. 32, 64-66.
Leonard MT, Davis-Richardson AG, Ardissone AN, Kemppainen KM, Drew JC, Ilonen J, Knip M, Simell O, Toppari J, Veijola R, Hyöty H, Triplett EW. The methylome of the gut microbiome: disparate Dam methylation patterns in intestinal Bacteroides dorei. Front Microbiol. 2014 Jul 17;5:361. doi: 10.3389/fmicb.2014.00361. PubMed PMID: 25101067; PubMed Central PMCID: PMC4101878.
Li R, Hempel LU, Jiang T. A non-parametric peak calling algorithm for DamID-Seq. PLoS One. 2015 Mar 18;10(3):e0117415. doi: 10.1371/journal.pone.0117415. PubMed PMID: 25785608; PubMed Central PMCID: PMC4364623.
Li W, Liu X, Hou T, Li H, Li F. Ultrasensitive homogeneous electrochemical strategy for DNA methyltransferase activity assay based on autonomous exonuclease III-assisted isothermal cycling signal amplification. Biosens Bioelectron. 2015 Aug 15;70:304-9. doi: 10.1016/j.bios.2015.03.060. PubMed PMID: 25840015.
Li X, Song T, Guo X. DNA methylation detection with end-to-end nanorod assembly-enhanced surface plasmon resonance. Analyst. 2015 Sep 21;140(18):6230-3. doi: 10.1039/c5an01015b. PubMed PMID: 26238553.
Lichtler,A., Hager,G.L., 1987. Induction of multiple replacement mutations by oligonucleotide-directed mutagenesis with extended mismatch primers. Gene Anal. Tech. 4, 111-118.
Liu P, Zhang K, Zhang R, Yin H, Zhou Y, Ai S. A colorimetric assay of DNA methyltransferase activity based on the keypad lock of duplex DNA modified meso-SiO2@Fe3O4. Anal Chim Acta. 2016 May 12;920:80-5. doi: 10.1016/j.aca.2016.03.028. PubMed PMID: 27114226.
Liu P, Wang D, Zhou Y, Wang H, Yin H, Ai S. DNA methyltransferase detection based on digestion triggering the combination of poly adenine DNA with gold nanoparticles. Biosens Bioelectron. 2016 Jun 15;80:74-8. doi: 10.1016/j.bios.2015.12.100. PubMed PMID: 26807517.
Liu,Q., Chen,X., Zhao,X., Chen,Y., Chen,D., 1992. The effect of methylation outside the recognition sequence of restriction endonuclease PvuII on its cleavage efficiency. Gene 113, 89-93.
Liu W, Lai H, Huang R, Zhao C, Wang Y, Weng X, Zhou X. DNA methyltransferase activity detection based on fluorescent silver nanocluster hairpin-shaped DNA probe with 5'-C-rich/G-rich-3' tails. Biosens Bioelectron. 2015 Jun 15;68:736-40. doi: 10.1016/j.bios.2015.02.005. PubMed PMID: 25682501.
Lobner-Olesen,A., Boye,E., Marinus,M.G., 1992. Expression of the Escherichia coli dam gene. Mol. Microbiol. 6, 1841-1851.
Lobner-Olesen,A., Hansen,F.G., Rasmussen,K.V., Martin,B., Kuempel,P.L., 1994. The initiation cascade for chromosome replication in wild-type and Dam methyltransferase deficient Escherichia coli cells. EMBO J. 13, 1856-1862.
Lobner-Olesen,A., von,F.U., 1996. Chromosomal replication incompatibility in Dam methyltransferase deficient Escherichia coli cells. EMBO J. 15, 5999-6008.
Lobner-Olesen,A., Marinus,M.G., Hansen,F.G., 2003. Role of SeqA and Dam in Escherichia coli gene expression: a global/microarray analysis. Proc. Natl. Acad. Sci. U. S. A 100, 4672-4677.
Lobner-Olesen,A., Skovgaard,O., Marinus,M.G., 2005. Dam methylation: coordinating cellular processes. Curr. Opin. Microbiol. 8, 154-160.
Lodge,J.K., Weston-Hafer,K., Berg,D.E., 1991. Tn5 insertion specificity is not influenced by IS50 end sequences in target DNA. Mol. Gen. Genet. 228, 312-315.
Louarn,J., Francois,V., Louarn,J.M., 1990. Chromosome replication pattern in dam mutants of Escherichia coli. Mol. Gen. Genet. 221, 291-294.
López-Garrido J, Casadesús J. Regulation of Salmonella enterica pathogenicity island 1 by DNA adenine methylation. Genetics. 2010 Mar;184(3):637-49. doi: 10.1534/genetics.109.108985. PubMed PMID: 20008574; PubMed Central PMCID: PMC2845334.
Lovett,S.T., Feschenko,V.V., 1996. Stabilization of diverged tandem repeats by mismatch repair: evidence for deletion formation via a misaligned replication intermediate. Proc. Natl. Acad. Sci. U. S. A 93, 7120-7124.
Low,D.A., Weyand,N.J., Mahan,M.J., 2001. Roles of DNA adenine methylation in regulating bacterial gene expression and virulence. Infect. Immun. 69, 7197-7204.
Lu,A.L., Clark,S., Modrich,P., 1983. Methyl-directed repair of DNA base-pair mismatches in vitro. Proc. Natl. Acad. Sci. U. S. A 80, 4639-4643.
Lu,A.L., 1987. Influence of GATC sequences on Escherichia coli DNA mismatch repair in vitro. J. Bacteriol. 169, 1254-1259.
Lu,A.L., Chang,D.Y., 1988. A novel nucleotide excision repair for the conversion of an A/G mismatch to C/G base pair in E. coli. Cell 54, 805-812.
Lu,A.L., Chang,D.Y., 1988. Repair of single base-pair transversion mismatches of Escherichia coli in vitro: correction of certain A/G mismatches is independent of dam methylation and host mutHLS gene functions. Genetics 118, 593-600.
Lu,A.L., Cuipa,M.J., Ip,M.S., Shanabruch,W.G., 1990. Specific A/G-to-C.G mismatch repair in Salmonella typhimurium LT2 requires the mutB gene product. J. Bacteriol. 172, 1232-1240.
Lu,M., Campbell,J.L., Boye,E., Kleckner,N., 1994. SeqA: a negative modulator of replication initiation in E. coli. Cell 77, 413-426.
Lundblad,V., Kleckner,N., 1982. Mutants of Escherichia coli K12 which affect excision of transposon Tn10. Basic Life Sci. 20, 245-258.
Lundblad,V., Kleckner,N., 1985. Mismatch repair mutations of Escherichia coli K12 enhance transposon excision. Genetics 109, 3-19.
Lunsford,R.D., 1995. A Tn4001 delivery system for Streptococcus gordonii (Challis). Plasmid 33, 153-157.
Lynch,A.S., Wang,J.C., 1995. SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc. Natl. Acad. Sci. U. S. A 92, 1896-1900.
Lyngstadaas,A., Lobner-Olesen,A., Boye,E., 1995. Characterization of three genes in the dam-containing operon of Escherichia coli. Mol. Gen. Genet. 247, 546-554.
Lyngstadaas,A., Sprenger,G.A., Boye,E., 1998. Impaired growth of an Escherichia coli rpe mutant lacking ribulose-5-phosphate epimerase activity. Biochim. Biophys. Acta 1381, 319-330.
Lyngstadaas,A., Lobner-Olesen,A., Grelland,E., Boye,E., 1999. The gene for 2-phosphoglycolate phosphatase (gph) in Escherichia coli is located in the same operon as dam and at least five other diverse genes. Biochim. Biophys. Acta 1472, 376-384.
Lyu,Y.L., Lin,C.T., Liu,L.F., 1999. Inversion/dimerization of plasmids mediated by inverted repeats. J. Mol. Biol. 285, 1485-1501.
Maas,R., 2001. Change of plasmid DNA structure, hypermethylation, and Lon-proteolysis as steps in a replicative cascade. Cell 105, 945-955.
Macaluso,A., Mettus,A.M., 1991. Efficient transformation of Bacillus thuringiensis requires nonmethylated plasmid DNA. J. Bacteriol. 173, 1353-1356.
Macdonald,P.M., Mosig,G., 1984. Regulation of a new bacteriophage T4 gene, 69, that spans an origin of DNA replication. EMBO J. 3, 2863-2871.
MacNeil,D.J., 1988. Characterization of a unique methyl-specific restriction system in Streptomyces avermitilis. J. Bacteriol. 170, 5607-5612.
Mainil,J.G., Sadowski,P.L., Tarsio,M., Moon,H.W., 1987. In vivo emergence of enterotoxigenic Escherichia coli variants lacking genes for K99 fimbriae and heat-stable enterotoxin. Infect. Immun. 55, 3111-3116.
Makris,J.C., Nordmann,P.L., Reznikoff,W.S., 1988. Mutational analysis of insertion sequence 50 (IS50) and transposon 5 (Tn5) ends. Proc. Natl. Acad. Sci. U. S. A 85, 2224-2228.
Makris,J.C., Reznikoff,W.S., 1989. Orientation of IS50 transposase gene and IS50 transposition. J. Bacteriol. 171, 5212-5214.
Makris,J.C., Nordmann,P.L., Reznikoff,W.S., 1990. Integration host factor plays a role in IS50 and Tn5 transposition. J. Bacteriol. 172, 1368-1373.
Malygin,E.G., Zinov'ev,V.V., Gorbunov,I., Popov,S.G., Rechkunova,N.I., 1988. [Effect of the structure of oligonucleotide substrates on interaction with methylase Eco dam]. Biokhimiia. 53, 1639-1647.
Malygin,E.G., Petrov,N.A., Gorbunov,Y.A., Kossykh,V.G., Hattman,S., 1997. Interaction of the phage T4 Dam DNA-[N6-adenine] methyltransferase with oligonucleotides containing native or modified (defective) recognition sites. Nucleic Acids Res. 25, 4393-4399.
Malygin,E.G., Zinoviev,V.V., Petrov,N.A., Evdokimov,A.A., Jen-Jacobson,L., Kossykh,V.G., Hattman,S., 1999. Effect of base analog substitutions in the specific GATC site on binding and methylation of oligonucleotide duplexes by the bacteriophage T4 Dam DNA-[N6-adenine] methyltransferase. Nucleic Acids Res. 27, 1135-1144.
Malygin,E.G., Lindstrom,W.M., Jr., Schlagman,S.L., Hattman,S., Reich,N.O., 2000. Pre-steady state kinetics of bacteriophage T4 dam DNA-[N(6)-adenine] methyltransferase: interaction with native (GATC) or modified sites. Nucleic Acids Res. 28, 4207-4211.
Malygin,E.G., Evdokimov,A.A., Zinoviev,V.V., Ovechkina,L.G., Lindstrom,W.M., Reich,N.O., Schlagman,S.L., Hattman,S., 2001. A dual role for substrate S-adenosyl-L-methionine in the methylation reaction with bacteriophage T4 Dam DNA-[N6-adenine]-methyltransferase. Nucleic Acids Res. 29, 2361-2369.
Malygin,E.G., Lindstrom,W.M., Jr., Zinoviev,V.V., Evdokimov,A.A., Schlagman,S.L., Reich,N.O., Hattman,S., 2003. Bacteriophage T4Dam (DNA-(adenine-N6)-methyltransferase): evidence for two distinct stages of methylation under single turnover conditions. J. Biol. Chem. 278, 41749-41755.
Malygin,E.G., Zinoviev,V.V., Evdokimov,A.A., Lindstrom,W.M., Jr., Reich,N.O., Hattman,S., 2003. DNA (cytosine-N4-)- and -(adenine-N6-)-methyltransferases have different kinetic mechanisms but the same reaction route. A comparison of M.BamHI and T4 Dam. J. Biol. Chem. 278, 15713-15719.
Mannarelli,B.M., Balganesh,T.S., Greenberg,B., Springhorn,S.S., Lacks,S.A., 1985. Nucleotide sequence of the Dpn II DNA methylase gene of Streptococcus pneumoniae and its relationship to the dam gene of Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 82, 4468-4472.
Marinus,M.G., 1973. Location of DNA methylation genes on the Escherichia coli K-12 genetic map. Mol. Gen. Genet. 127, 47-55.
Marinus MG. DNA methylation and mutator genes in Escherichia coli K-12. Mutat Res. 2010 Oct;705(2):71-6. doi: 10.1016/j.mrrev.2010.05.001. Review. PubMed PMID: 20471491; PubMed Central PMCID: PMC2932865.
Marinus,M.G., Morris,N.R., 1973. Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J. Bacteriol. 114, 1143-1150.
Marinus,M.G., Morris,N.R., 1974. Biological function for 6-methyladenine residues in the DNA of Escherichia coli K12. J. Mol. Biol. 85, 309-322.
Marinus,M.G., Morris,N.R., 1975. Pleiotropic effects of a DNA adenine methylation mutation (dam-3) in Escherichia coli K12. Mutat. Res. 28, 15-26.
Marinus,M.G., Konrad,E.B., 1976. Hyper-recombination in dam mutants of Escherichia coli K-12. Mol. Gen. Genet. 149, 273-277.
Marinus,M.G., 1980. Influence of uvrD3, uvrE502, and recL152 mutations on the phenotypes of Escherichia coli K-12 dam mutants. J. Bacteriol. 141, 223-226.
Marinus,M.G., Carraway,M., Frey,A.Z., Brown,L., Arraj,J.A., 1983. Insertion mutations in the dam gene of Escherichia coli K-12. Mol. Gen. Genet. 192, 288-289.
Marinus,M.G., Poteete,A., Arraj,J.A., 1984. Correlation of DNA adenine methylase activity with spontaneous mutability in Escherichia coli K-12. Gene 28, 123-125.
Marinus,M.G., 1985. DNA methylation influences trpR promoter activity in Escherichia coli K-12. Mol. Gen. Genet. 200, 185-186.
Marinus,M.G., 2000. Recombination is essential for viability of an Escherichia coli dam (DNA adenine methyltransferase) mutant. J. Bacteriol. 182, 463-468.
Marinus MG. DNA Mismatch Repair. EcoSal Plus. 2012 Nov;5(1). doi: 10.1128/ecosalplus.7.2.5. PubMed PMID: 26442827; PubMed Central PMCID: PMC4231543.
Marinus MG, Løbner-Olesen A. DNA Methylation. EcoSal Plus. 2009 Aug;3(2). doi: 10.1128/ecosalplus.4.4.5. PubMed PMID: 26443769.
Marinus MG, Casadesus J. Roles of DNA adenine methylation in host-pathogen interactions: mismatch repair, transcriptional regulation, and more. FEMS Microbiol Rev. 2009 May;33(3):488-503. doi: 10.1111/j.1574-6976.2008.00159.x. Review. PubMed PMID: 19175412; PubMed Central PMCID: PMC2941194.
Marinus MG, Løbner-Olesen A. DNA Methylation. EcoSal Plus. 2014 May;6(1). doi: 10.1128/ecosalplus.ESP-0003-2013. PubMed PMID: 26442938; PubMed Central PMCID: PMC4231299.
Marrero,R., Welkos,S.L., 1995. The transformation frequency of plasmids into Bacillus anthracis is affected by adenine methylation. Gene 152, 75-78.
Marti,T.M., Kunz,C., Fleck,O., 2002. DNA mismatch repair and mutation avoidance pathways. J. Cell Physiol 191, 28-41.
Martin,C., 1996. The clp (CS31A) operon is negatively controlled by Lrp, ClpB, and L-alanine at the transcriptional level. Mol. Microbiol. 21, 281-292.
Marzabal,S., Dubois,S., Thielking,V., Cano,A., Eritja,R., Guschlbauer,W., 1995. Dam methylase from Escherichia coli: kinetic studies using modified DNA oligomers: hemimethylated substrates. Nucleic Acids Res. 23, 3648-3655.
Massey,A., Offman,J., Macpherson,P., Karran,P., 2003. DNA mismatch repair and acquired cisplatin resistance in E. coli and human ovarian carcinoma cells. DNA Repair (Amst) 2, 73-89.
Matic,I., Ekiert,D., Radman,M., Kohiyama,M., 2006. Generation of DNA-free Escherichia coli cells by 2-aminopurine requires mismatch repair and nonmethylated DNA. J. Bacteriol. 188, 339-342.
Matsutani,S., 1991. Multiple copies of IS10 in the Enterobacter cloacae MD36 chromosome. J. Bacteriol. 173, 7802-7809.
McClelland,M., 1984. Selection against dam methylation sites in the genomes of DNA of enterobacteriophages. J. Mol. Evol. 21, 317-322.
McCommas,S.A., Syvanen,M., 1988. Temporal control of transposition in Tn5. J. Bacteriol. 170, 889-894.
McCool,J.D., Long,E., Petrosino,J.F., Sandler,H.A., Rosenberg,S.M., Sandler,S.J., 2004. Measurement of SOS expression in individual Escherichia coli K-12 cells using fluorescence microscopy. Mol. Microbiol. 53, 1343-1357.
McGraw,B.R., Marinus,M.G., 1980. Isolation and characterization of Dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12. Mol. Gen. Genet. 178, 309-315.
McKelvie JC, Richards MI, Harmer JE, Milne TS, Roach PL, Oyston PC. Inhibition of Yersinia pestis DNA adenine methyltransferase in vitro by a stibonic acid compound: identification of a potential novel class of antimicrobial agents. Br J Pharmacol. 2013 Jan;168(1):172-88. doi: 10.1111/j.1476-5381.2012.02134.x. PubMed PMID: 22889062; PubMed Central PMCID: PMC3570013.
Mehling JS, Lavender H, Clegg S. A Dam methylation mutant of Klebsiella pneumoniae is partially attenuated. FEMS Microbiol Lett. 2007 Mar;268(2):187-93. PubMed PMID: 17328745.
Messer,W., Bellekes,U., Lother,H., 1985. Effect of dam methylation on the activity of the E. coli replication origin, oriC. EMBO J. 4, 1327-1332.
Messer,W., Noyer-Weidner,M., 1988. Timing and targeting: the biological functions of Dam methylation in E. coli. Cell 54, 735-737.
Messina,J.P., Gilkeson,G.S., Pisetsky,D.S., 1993. The influence of DNA structure on the in vitro stimulation of murine lymphocytes by natural and synthetic polynucleotide antigens. Cell Immunol. 147, 148-157.
Meury,J., Bahloul,A., Kohiyama,M., 1995. Importance of the replication origin sequestration in cell division of Escherichia coli. Biochimie 77, 875-879.
Michalewicz,J., Hsu,E., Larson,J.J., Nicholson,A.W., 1991. Physical map and genetic early region of the T7-related coliphage, BA14. Gene 98, 89-93.
Miner,Z., Hattman,S., 1988. Molecular cloning, sequencing, and mapping of the bacteriophage T2 dam gene. J. Bacteriol. 170, 5177-5184.
Miner,Z., Schlagman,S., Hattman,S., 1988. Single amino acid changes which alter the sequence specificity of the T4 and T2 (Dam) DNA-adenine methyltransferases. Gene 74, 275-276.
Miner,Z., Schlagman,S.L., Hattman,S., 1989. Single amino acid changes that alter the DNA sequence specificity of the DNA-[N6-adenine] methyltransferase (Dam) of bacteriophage T4. Nucleic Acids Res. 17, 8149-8157.
Minko,I., Hattman,S., Lloyd,R.S., Kossykh,V., 2001. Methylation by a mutant T2 DNA [N(6)-adenine] methyltransferase expands the usage of RecA-assisted endonuclease (RARE) cleavage. Nucleic Acids Res. 29, 1484-1490.
Modrich,P., 1989. Methyl-directed DNA mismatch correction. J. Biol. Chem. 264, 6597-6600.
Mohn,G.R., Kerklaan,P.R., ten Bokkum-Coenradi,W.P., ten Hulscher,T.E., 1983. A differential DNA-repair test using mixtures of E. coli K12 strains in liquid suspension and animal-mediated assays. Mutat. Res. 113, 403-415.
Morisato,D., Kleckner,N., 1987. Tn10 transposition and circle formation in vitro. Cell 51, 101-111.
Naumann TA(1), Tavassoli A, Benkovic SJ.Chembiochem. 2008 Jan 25;9(2):194-7. Genetic selection of cyclic peptide Dam methyltransferase inhibitors. DOI: 10.1002/cbic.200700561 PMID: 18085543
Nelson,S.F., McCusker,J.H., Sander,M.A., Kee,Y., Modrich,P., Brown,P.O., 1993. Genomic mismatch scanning: a new approach to genetic linkage mapping. Nat. Genet. 4, 11-18.
Nicholson,B., Low,D., 2000. DNA methylation-dependent regulation of pef expression in Salmonella typhimurium. Mol. Microbiol. 35, 728-742.
Nieuwenhuis,F.J., van der Drift,J.A., Voet,A.B., van Dam,K., 1974. Evidence for a naturally occurring ATPase-inhibitor in Escherichia coli. Biochim. Biophys. Acta 368, 461-463.
Norris,V., 1990. DNA replication in Escherichia coli is initiated by membrane detachment of oriC. A model. J. Mol. Biol. 215, 67-71.
Norris,V., 1993. Sequestration of origins of chromosome replication in Escherichia coli by lipid compartments: the pocket hypothesis. J. Theor. Biol. 164, 239-244.
Nou,X., Skinner,B., Braaten,B., Blyn,L., Hirsch,D., Low,D., 1993. Regulation of pyelonephritis-associated pili phase-variation in Escherichia coli: binding of the PapI and the Lrp regulatory proteins is controlled by DNA methylation. Mol. Microbiol. 7, 545-553.
Nou,X., Braaten,B., Kaltenbach,L., Low,D.A., 1995. Differential binding of Lrp to two sets of pap DNA binding sites mediated by Pap I regulates Pap phase variation in Escherichia coli. EMBO J. 14, 5785-5797.
Nowosielska,A., Marinus,M.G., 2005. Cisplatin induces DNA double-strand break formation in Escherichia coli dam mutants. DNA Repair (Amst) 4, 773-781.
Nwosu,V.U., 1992. Overexpression of the wild-type gene coding for Escherichia coli DNA adenine methylase (dam). Biochem. J. 283 ( Pt 3), 745-750.
Ogawa,T., Okazaki,T., 1994. Cell cycle-dependent transcription from the gid and mioC promoters of Escherichia coli. J. Bacteriol. 176, 1609-1615.
Olsson,J., Dasgupta,S., Berg,O.G., Nordstrom,K., 2002. Eclipse period without sequestration in Escherichia coli. Mol. Microbiol. 44, 1429-1440.
Olsson,J.A., Nordstrom,K., Hjort,K., Dasgupta,S., 2003. Eclipse-synchrony relationship in Escherichia coli strains with mutations affecting sequestration, initiation of replication and superhelicity of the bacterial chromosome. J. Mol. Biol. 334, 919-931.
Onogi,T., Niki,H., Yamazoe,M., Hiraga,S., 1999. The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli. Mol. Microbiol. 31, 1775-1782.
Onogi,T., Yamazoe,M., Ichinose,C., Niki,H., Hiraga,S., 2000. Null mutation of the dam or seqA gene suppresses temperature-sensitive lethality but not hypersensitivity to novobiocin of muk null mutants. J. Bacteriol. 182, 5898-5901.
Orekhov,A.V., Strokina,I.V., Furs,A.R., 1989. [Restriction of two-replicon shuttle Escherichia coli-Streptomyces plasmids in Streptomyces lividans strain 66]. Genetika 25, 614-625.
Orian A, Abed M, Kenyagin-Karsenti D, Boico O. DamID: a methylation-based chromatin profiling approach. Methods Mol Biol. 2009;567:155-69. doi: 10.1007/978-1-60327-414-2_11. Review. PubMed PMID: 19588092.
Oshima,T., Wada,C., Kawagoe,Y., Ara,T., Maeda,M., Masuda,Y., Hiraga,S., Mori,H., 2002. Genome-wide analysis of deoxyadenosine methyltransferase-mediated control of gene expression in Escherichia coli. Mol. Microbiol. 45, 673-695.
Ostendorf,T., Cherepanov,P., de,V.J., Wackernagel,W., 1999. Characterization of a dam mutant of Serratia marcescens and nucleotide sequence of the dam region. J. Bacteriol. 181, 3880-3885.
Owen,P., Meehan,M., de Loughry-Doherty,H., Henderson,I., 1996. Phase-variable outer membrane proteins in Escherichia coli. FEMS Immunol. Med. Microbiol. 16, 63-76.
Pal,D., Venkova-Canova,T., Srivastava,P., Chattoraj,D.K., 2005. Multipartite regulation of rctB, the replication initiator gene of Vibrio cholerae chromosome II. J. Bacteriol. 187, 7167-7175.
Palmer,B.R., Marinus,M.G., 1991. DNA methylation alters the pattern of spontaneous mutation in Escherichia coli cells (mutD) defective in DNA polymerase III proofreading. Mutat. Res. 264, 15-23.
Palmer,B.R., Marinus,M.G., 1994. The dam and dcm strains of Escherichia coli--a review. Gene 143, 1-12.
Park,Y., Kim,G.D., Choi,T.J., 2006. Molecular cloning and characterization of the DNA adenine methyltransferase gene in Feldmannia sp. virus. Virus Genes.
Parker,B., Marinus,M.G., 1988. A simple and rapid method to obtain substitution mutations in Escherichia coli: isolation of a dam deletion/insertion mutation. Gene 73, 531-535.
Parker,B.O., Marinus,M.G., 1992. Repair of DNA heteroduplexes containing small heterologous sequences in Escherichia coli. Proc. Natl. Acad. Sci. U. S. A 89, 1730-1734.
Parniewski,P., Kwinkowski,M., Wilk,A., Klysik,J., 1990. Dam methyltransferase sites located within the loop region of the oligopurine-oligopyrimidine sequences capable of forming H-DNA are undermethylated in vivo. Nucleic Acids Res. 18, 605-611.
Pelzer,S., Reichert,W., Huppert,M., Heckmann,D., Wohlleben,W., 1997. Cloning and analysis of a peptide synthetase gene of the balhimycin producer Amycolatopsis mediterranei DSM5908 and development of a gene disruption/replacement system. J. Biotechnol. 56, 115-128.
Peterson,K.R., Wertman,K.F., Mount,D.W., Marinus,M.G., 1985. Viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants requires increased expression of specific genes in the SOS regulon. Mol. Gen. Genet. 201, 14-19.
Peterson,K.R., Mount,D.W., 1993. Analysis of the genetic requirements for viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants. J. Bacteriol. 175, 7505-7508.
Peterson,K.R., Mount,D.W., 1993. Analysis of the genetic requirements for viability of Escherichia coli K-12 DNA adenine methylase (dam) mutants [published erratum appears in J Bacteriol 1994 Mar;176(5):1554]. J. Bacteriol. 175, 7505-7508.
Peterson,S.N., Reich,N.O., 2006. GATC flanking sequences regulate Dam activity: evidence for how Dam specificity may influence pap expression. J. Mol. Biol. 355, 459-472.
Peterson SN, Reich NO. Competitive Lrp and Dam assembly at the pap regulatory region: implications for mechanisms of epigenetic regulation. J Mol Biol. 2008 Oct 31;383(1):92-105. doi: 10.1016/j.jmb.2008.07.086. PubMed PMID: 18706913.
Phillips,G.J., Arnold,J., Ivarie,R., 1987. The effect of codon usage on the oligonucleotide composition of the E. coli genome and identification of over- and underrepresented sequences by Markov chain analysis. Nucleic Acids Res. 15, 2627-2638.
Phillips,G.J., Arnold,J., Ivarie,R., 1987. The effect of codon usage on the oligonucleotide composition of the E. coli genome and identification of. Nucleic Acids Res. 15, 2627-2638.
Piekarowicz,A., Bujnicki,J., 1999. Cloning of the Dam methyltransferase gene from Haemophilus influenzae bacteriophage HP1. Acta Microbiol. Pol. 48, 123-129.
Piknova,M., Pristas,P., Javorsky,P., Kasperowic,A., Michalowski,T., 2004. GATC-specific restriction and modification systems in treponemes. Lett. Appl. Microbiol. 38, 311-314.
Pirrotta,V., 1976. Two restriction endonucleases from Bacillus globiggi. Nucleic Acids Res. 3, 1747-1760.
Plasterk,R.H., Vrieling,H., Van de,P.P., 1983. Transcription initiation of Mu mom depends on methylation of the promoter region and a phage-coded transactivator. Nature 301, 344-347.
Plasterk,R.H., Vollering,M., Brinkman,A., Van de,P.P., 1984. Analysis of the methylation-regulated Mu mom transcript. Cell 36, 189-196.
Plumbridge,J., Soll,D., 1987. The effect of dam methylation on the expression of glnS in E. coli. Biochimie 69, 539-541.
Plumbridge,J., 1987. The role of dam methylation in controlling gene expression. Biochimie 69, 439-443.
Polaczek,P., Kwan,K., Liberies,D.A., Campbell,J.L., 1997. Role of architectural elements in combinatorial regulation of initiation of DNA replication in Escherichia coli. Mol. Microbiol. 26, 261-275.
Polaczek,P., Kwan,K., Campbell,J.L., 1998. GATC motifs may alter the conformation of DNA depending on sequence context and N6-adenine methylation status: possible implications for DNA-protein recognition. Mol. Gen. Genet. 258, 488-493.
Pollak AJ, Reich NO. DNA adenine methyltransferase facilitated diffusion is enhanced by protein-DNA "roadblock" complexes that induce DNA looping. Biochemistry. 2015 Apr 7;54(13):2181-92. doi: 10.1021/bi501344r. PubMed PMID: 25785689.
Pollak AJ, Reich NO. Proximal recognition sites facilitate intrasite hopping by DNA adenine methyltransferase: mechanistic exploration of epigenetic gene regulation. J Biol Chem. 2012 Jun 29;287(27):22873-81. doi: 10.1074/jbc.M111.332502. PubMed PMID: 22570478; PubMed Central PMCID: PMC3391122.
Posnick,L.M., Samson,L.D., 1999. Influence of S-adenosylmethionine pool size on spontaneous mutation, dam methylation, and cell growth of Escherichia coli. J. Bacteriol. 181, 6756-6762.
Pristas,P., Molnarova,V., Javorsky,P., 1998. Detection of N6-methyladenine in GATC sequences of Selenomonas ruminantium. J. Basic Microbiol. 38, 283-287.
Pucciarelli,M.G., Prieto,A.I., Casadesus,J., Garcia-del,P.F., 2002. Envelope instability in DNA adenine methylase mutants of Salmonella enterica. Microbiology 148, 1171-1182.
Quillardet,P., Hofnung,M., 1987. Induction of the SOS system in a dam-3 mutant: a diagnostic strain for chemicals causing DNA mismatches. Mutat. Res. 177, 17-26.
Quinones,A., Messer,W., 1988. Discoordinate gene expression in the dnaA-dnaN operon of Escherichia coli. Mol. Gen. Genet. 213, 118-124.
Radlinska,M., Bujnicki,J.M., 2001. Cloning of enterohemorrhagic Escherichia coli phage VT-2 dam methyltransferase. Acta Microbiol. Pol. 50, 161-167.
Rao,B.S., Buckler-White,A., 1998. Direct visualization of site-specific and strand-specific DNA methylation patterns in automated DNA sequencing data. Nucleic Acids Res. 26, 2505-2507.
Raschke,E., 1993. Comprehensive restriction enzyme lists to update any DNA sequence computer program. Genet. Anal. Tech. Appl. 10, 49-60.
Rasmussen,L.J., Marinus,M.G., Lobner-Olesen,A., 1994. Novel growth rate control of dam gene expression in Escherichia coli. Mol. Microbiol. 12, 631-638.
Rasmussen,L.J., Lobner-Olesen,A., Marinus,M.G., 1995. Growth-rate-dependent transcription initiation from the dam P2 promoter. Gene 157, 213-215.
Reddy,M., Gowrishankar,J., 2000. Characterization of the uup locus and its role in transposon excisions and tandem repeat deletions in Escherichia coli. J. Bacteriol. 182, 1978-1986.
Reingold V, Luria N, Robichon A, Dombrovsky A. Adenine methylation may contribute to endosymbiont selection in a clonal aphid population. BMC Genomics. 2014 Nov 19;15:999. doi: 10.1186/1471-2164-15-999. PubMed PMID: 25406741; PubMed Central PMCID: PMC4246565.
Rene,B., Auclair,C., Paoletti,C., 1988. Frameshift lesions induced by oxazolopyridocarbazoles are recognized by the mismatch repair system in Escherichia coli. Mutat. Res. 193, 269-273.
Rewinski,C., Marinus,M.G., 1987. Mutation spectrum in Escherichia coli DNA mismatch repair deficient (mutH) strain. Nucleic Acids Res. 15, 8205-8215.
Richardson,A.R., Stojiljkovic,I., 2001. Mismatch repair and the regulation of phase variation in Neisseria meningitidis. Mol. Microbiol. 40, 645-655.
Ringquist,S., Smith,C.L., 1992. The Escherichia coli chromosome contains specific, unmethylated dam and dcm sites. Proc. Natl. Acad. Sci. U. S. A 89, 4539-4543.
Ritchie,L., Podger,D.M., Hall,R.M., 1988. A mutation in the DNA adenine methylase gene (dam) of Salmonella typhimurium decreases susceptibility to 9-aminoacridine-induced frameshift mutagenesis. Mutat. Res. 194, 131-141.
Ritchie,L.J., Hall,R.M., Podger,D.M., 1986. Mutant of Salmonella typhimurium LT2 deficient in DNA adenine methylation. J. Bacteriol. 167, 420-422.
Riva,A., Delorme,M.O., Chevalier,T., Guilhot,N., Henaut,C., Henaut,A., 2004. Characterization of the GATC regulatory network in E. coli. BMC. Genomics 5, 48.
Robbins-Manke,J.L., Zdraveski,Z.Z., Marinus,M., Essigmann,J.M., 2005. Analysis of global gene expression and double-strand-break formation in DNA adenine methyltransferase- and mismatch repair-deficient Escherichia coli. J. Bacteriol. 187, 7027-7037.
Roberts,D., Hoopes,B.C., McClure,W.R., Kleckner,N., 1985. IS10 transposition is regulated by DNA adenine methylation. Cell 43, 117-130.
Rogers,S.D., Rogers,M.E., Saunders,G., Holt,G., 1986. Isolation of mutants sensitive to 2-aminopurine and alkylating agents and evidence for the role of DNA methylation in Penicillium chrysogenum. Curr. Genet. 10, 557-560.
Russell,D.W., Zinder,N.D., 1987. Hemimethylation prevents DNA replication in E. coli. Cell 50, 1071-1079.
Russell,D.W., Hirata,R.K., 1989. The detection of extremely rare DNA modifications. Methylation in dam- and hsd- Escherichia coli strains. J. Biol. Chem. 264, 10787-10794.
Russell,D.W., Horiuchi,K., 1991. The mutH gene regulates the replication and methylation of the pMB1 origin. J. Bacteriol. 173, 3209-3214.
SaiSree,L., Reddy,M., Gowrishankar,J., 2000. lon incompatibility associated with mutations causing SOS induction: null uvrD alleles induce an SOS response in Escherichia coli. J. Bacteriol. 182, 3151-3157.
Sales J, Vali L, Hoyle DV, Yates CM, Amyes SG, McKendrick IJ. The interaction between dam methylation sites and Xba1 restriction digest sites in Escherichia coli O157:H7 EDL933. J Appl Microbiol. 2007 Mar;102(3):820-5. PubMed PMID: 17309632.
Sarnacki SH, Castañeda Mdel R, Noto Llana M, Giacomodonato MN, Valvano MÁ, Cerquetti MC. Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis. PLoS One. 2013;8(2):e56474. doi: 10.1371/journal.pone.0056474. PubMed PMID: 23418573; PubMed Central PMCID: PMC3572086.
Sarnacki SH, Marolda CL, Noto Llana M, Giacomodonato MN, Valvano MA, Cerquetti MC. Dam methylation controls O-antigen chain length in Salmonella enterica serovar enteritidis by regulating the expression of Wzz protein. J Bacteriol. 2009 Nov;191(21):6694-700. doi: 10.1128/JB.00839-09. PubMed PMID: 19717610; PubMed Central PMCID: PMC2795312.
Schaaper,R.M., 1989. Escherichia coli mutator mutD5 is defective in the mutHLS pathway of DNA mismatch repair. Genetics 121, 205-212.
Scharnagl,M., Richter,S., Hagemann,M., 1998. The cyanobacterium Synechocystis sp. strain PCC 6803 expresses a DNA methyltransferase specific for the recognition sequence of the restriction endonuclease PvuI [published erratum appears in J Bacteriol 1998 Dec;180(24):6794]. J. Bacteriol. 180, 4116-4122.
Schauzu,M.A., Kucherer,C., Kolling,R., Messer,W., Lother,H., 1987. Transcripts within the replication origin, oriC, of Escherichia coli. Nucleic Acids Res. 15, 2479-2497.
Scherzer,E., Auer,B., Schweiger,M., 1987. Identification, purification, and characterization of Escherichia coli virus T1 DNA methyltransferase. J. Biol. Chem. 262, 15225-15231.
Schlagman,S.L., Hattman,S., 1983. Molecular cloning of a functional dam+ gene coding for phage T4 DNA adenine methylase. Gene 22, 139-156.
Schlagman,S.L., Hattman,S., Marinus,M.G., 1986. Direct role of the Escherichia coli Dam DNA methyltransferase in methylation-directed mismatch repair. J. Bacteriol. 165, 896-900.
Schlagman,S.L., Miner,Z., Feher,Z., Hattman,S., 1988. The DNA [adenine-N6]methyltransferase (Dam) of bacteriophage T4. Gene 73, 517-530.
Schlagman,S.L., Hattman,S., 1989. The bacteriophage T2 and T4 DNA-[N6-adenine] methyltransferase (Dam) sequence specificities are not identical. Nucleic Acids Res. 17, 9101-9112.
Schneider-Scherzer,E., Auer,B., de Groot,E.J., Schweiger,M., 1990. Primary structure of a DNA (N6-adenine)-methyltransferase from Escherichia coli virus T1. DNA sequence, genomic organization, and comparative analysis. J. Biol. Chem. 265, 6086-6091.
Schroeder,C., Jurkschat,H., Meisel,A., Reich,J.G., Kruger,D., 1986. Unusual occurrence of EcoP1 and EcoP15 recognition sites and counterselection of type II methylation and restriction sequences in bacteriophage T7 DNA. Gene 45, 77-86.
Seiler,A., Blocker,H., Frank,R., Kahmann,R., 1986. The mom gene of bacteriophage Mu: the mechanism of methylation- dependent expression. EMBO J. 5, 2719-2728.
Seshasayee AS. An assessment of the role of DNA adenine methyltransferase on gene expression regulation in E coli. PLoS One. 2007 Mar 7;2(3):e273. PubMed PMID: 17342207; PubMed Central PMCID: PMC1804101.
Shaiwale NS, Basu B, Deobagkar DD, Deobagkar DN, Apte SK. DNA adenine hypomethylation leads to metabolic rewiring in Deinococcus radiodurans. J Proteomics. 2015 Aug 3;126:131-9. doi: 10.1016/j.jprot.2015.05.036. PubMed PMID: 26049032.
Sharma R, Ritler D, Meister P. Tools for DNA adenine methyltransferase identification analysis of nuclear organization during C. elegans development. Genesis. 2016 Apr;54(4):151-9. doi: 10.1002/dvg.22925. PubMed PMID: 26845390.
Shenoy,S., Ehrlich,K.C., Ehrlich,M., 1987. Repair of thymine.guanine and uracil.guanine mismatched base-pairs in bacteriophage M13mp18 DNA heteroduplexes. J. Mol. Biol. 197, 617-626.
Singer,J.T., Choe,W., Schmidt,K.A., Makula,R.A., 1992. Virulence plasmid pJM1 prevents the conjugal entry of plasmid DNA into the marine fish pathogen Vibrio anguillarum 775. J. Gen. Microbiol. 138 ( Pt 12), 2485-2490.
Sledziewska-Gojska,E., Janion,C., 1982. Effect of proofreading and dam-instructed mismatch repair systems on N4-hydroxycytidine-induced mutagenesis. Mol. Gen. Genet. 186, 411-418.
Smith,D.W., Garland,A.M., Herman,G., Enns,R.E., Baker,T.A., Zyskind,J.W., 1985. Importance of state of methylation of oriC GATC sites in initiation of DNA replication in Escherichia coli. EMBO J. 4, 1319-1326.
Smith,D.W., Yee,T.W., Baird,C., Krishnapillai,V., 1991. Pseudomonad replication origins: a paradigm for bacterial origins? Mol. Microbiol. 5, 2581-2587.
Smith,D.W., Stine,W.B., Svitil,A.L., Bakker,A., Zyskind,J.W., 1992. Escherichia coli cells lacking methylation-blocking factor (leucine-responsive regulatory protein) have precise timing of initiation of DNA replication in the cell cycle. J. Bacteriol. 174, 3078-3082.
Sneppen K, Semsey S. Mismatch repair at stop codons is directed independent of GATC methylation on the Escherichia coli chromosome. Sci Rep. 2014 Dec 5;4:7346. doi: 10.1038/srep07346. PubMed PMID: 25475788.
Sohanpal,B.K., El-Labany,S., Lahooti,M., Plumbridge,J.A., Blomfield,I.C., 2004. Integrated regulatory responses of fimB to N-acetylneuraminic (sialic) acid and GlcNAc in Escherichia coli K-12. Proc. Natl. Acad. Sci. U. S. A 101, 16322-16327.
Som,S., Friedman,S., 1990. Direct photolabeling of the EcoRII methyltransferase with S-adenosyl-L- methionine. J. Biol. Chem. 265, 4278-4283.
Sommer,S., Leitao,A., Bernardi,A., Bailone,A., Devoret,R., 1991. Introduction of a UV-damaged replicon into a recipient cell is not a sufficient condition to produce an SOS-inducing signal. Mutat. Res. 254, 107-117.
Spielmann-Ryser,J., Moser,M., Kast,P., Weber,H., 1991. Factors determining the frequency of plasmid cointegrate formation mediated by insertion sequence IS3 from Escherichia coli. Mol. Gen. Genet. 226, 441-448.
Spiers,A.J., Bhana,N., Bergquist,P.L., 1993. Regulatory interactions between RepA, an essential replication protein, and the DNA repeats of RepFIB from plasmid P307. J. Bacteriol. 175, 4016-4024.
sque-Kochem,C., Eichenlaub,R., 1993. Purification and DNA binding of the D protein, a putative resolvase of the F-factor of Escherichia coli. Mol. Gen. Genet. 237, 206-214.
Stambuk,S., Radman,M., 1998. Mechanism and control of interspecies recombination in Escherichia coli. I. Mismatch repair, methylation, recombination and replication functions. Genetics 150, 533-542.
Stamm,L.V., Greene,S.R., Barnes,N.Y., Bergen,H.L., Hardham,J.M., 1997. Identification and characterization of a Treponema pallidum subsp. pallidum gene encoding a DNA adenine methyltransferase. FEMS Microbiol. Lett. 155, 115-119.
Stancheva,I., Koller,T., Sogo,J.M., 1999. Asymmetry of Dam remethylation on the leading and lagging arms of plasmid replicative intermediates. EMBO J. 18, 6542-6551.
Stephenson SA, Brown PD. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli. Front Public Health. 2016 Jun 27;4:131. doi: 10.3389/fpubh.2016.00131. PubMed PMID: 27446897; PubMed Central PMCID: PMC4921776.
Sternberg,N., Tiemeier,D., Enquist,L., 1977. In vitro packaging of a lambda Dam vector containing EcoRI DNA fragments of Escherichia coli and phage P1. Gene 1, 255-280.
Sternberg,N., Coulby,J., 1990. Cleavage of the bacteriophage P1 packaging site (pac) is regulated by adenine methylation. Proc. Natl. Acad. Sci. U. S. A 87, 8070-8074.
Storl,K., Storl,H.J., 1989. DNA topoisomerase I from Diplococcus pneumoniae. Biomed. Biochim. Acta 48, 69-76.
Sun,W., Hattman,S., 1996. Escherichia coli OxyR protein represses the unmethylated bacteriophage Mu mom operon without blocking binding of the transcriptional activator C. Nucleic Acids Res. 24, 4042-4049.
Sussman,J.K., Masada-Pepe,C., Simons,E.L., Simons,R.W., 1990. Vectors for constructing kan gene fusions: direct selection of mutations affecting IS10 gene expression. Gene 90, 135-140.
Sutera,V.A., Jr., Lovett,S.T., 2006. The role of replication initiation control in promoting survival of replication fork damage. Mol. Microbiol. 60, 229-239.
Suzuki,Y., Nishizawa,M., 1994. The yeast GAL11 protein is involved in regulation of the structure and the position effect of telomeres. Mol. Cell Biol. 14, 3791-3799.
Svendsen,J., Larsen,J.L., 1977. Studies of the pathogenesis of enteric E. coli infections in weaned pigs. The significance of the milk of the dam in preventing the disease. Nord. Vet. Med. 29, 533-538.
Szatmari,G.B., Lapointe,M., DuBow,M.S., 1987. The right end of transposable bacteriophage D108 contains a 520 base pair protein-encoding sequence not present in bacteriophage Mu. Nucleic Acids Res. 15, 6691-6704.
Szyf,M., Gruenbaum,Y., Urieli-Shoval,S., Razin,A., 1982. Studies on the biological role of DNA methylation: V. The pattern of E.coli DNA methylation. Nucleic Acids Res. 10, 7247-7259.
Szyf,M., vraham-Haetzni,K., Reifman,A., Shlomai,J., Kaplan,F., Oppenheim,A., Razin,A., 1984. DNA methylation pattern is determined by the intracellular level of the methylase. Proc. Natl. Acad. Sci. U. S. A 81, 3278-3282.
Szyf,M., Meisels,E., Razin,A., 1986. Biological role of DNA methylation: sequence-specific single-strand breaks associated with hypomethylation of GATC sites in Escherichia coli DNA. J. Bacteriol. 168, 1487-1490.
Taghbalout,A., Landoulsi,A., Kern,R., Yamazoe,M., Hiraga,S., Holland,B., Kohiyama,M., Malki,A., 2000. Competition between the replication initiator DnaA and the sequestration factor SeqA for binding to the hemimethylated chromosomal origin of E. coli in vitro. Genes Cells 5, 873-884.
Tang F, Xing XW, Chu JM, Yuan Q, Zhou X, Feng YQ, Yuan BF. A highly sensitive fluorescence assay for methyltransferase activity by exonuclease-aided signal amplification. Analyst. 2015 Jul 7;140(13):4636-41. doi: 10.1039/c5an00732a. PubMed PMID: 26030413.
Tavazoie,S., Church,G.M., 1998. Quantitative whole-genome analysis of DNA-protein interactions by in vivo methylase protection in E. coli. Nat. Biotechnol. 16, 566-571.
Taylor,J.D., Goodall,A.J., Vermote,C.L., Halford,S.E., 1990. Fidelity of DNA recognition by the EcoRV restriction/modification system in vivo. Biochemistry 29, 10727-10733.
Taylor,V.L., Oyston,P.C., Titball,R.W., 2003. DNA adenine methylation. Adv. Exp. Med. Biol. 529:13-7., 13-17.
Thielking,V., Dubois,S., Eritja,R., Guschlbauer,W., 1997. Dam methyltransferase from Escherichia coli: kinetic studies using modified DNA oligomers: nonmethylated substrates. Biol. Chem. 378, 407-415.
Torreblanca,J., Casadesus,J., 1996. DNA adenine methylase mutants of Salmonella typhimurium and a novel dam-regulated locus. Genetics 144, 15-26.
Torreblanca,J., Marques,S., Casadesus,J., 1999. Synthesis of FinP RNA by plasmids F and pSLT is regulated by DNA adenine methylation. Genetics 152, 31-45.
Toussaint,A., 1977. DNA modification of bacteriophage Mu-1 requires both host and bacteriophage functions. J. Virol. 23, 825-826.
Trobner,W., Piechocki,R., 1985. Competition between the dam mutator and the isogenic wild-type of Escherichia coli. Mutat. Res. 144, 145-149.
Trun,N.J., Gottesman,S., 1991. Characterization of Escherichia coli mutants with altered ploidy. Res. Microbiol. 142, 195-200.
Tuzikov,F.V., Zinov'ev,V.V., Iashina,L.N., Vavilin,V.I., Gorbunov,I., 1986. [Study of the substrate-induced changes in the state of Eco dam methylase using a method of small-angle x-ray scattering]. Mol. Biol. (Mosk) 20, 1002-1007.
Tuzikov,F.V., Zinov'ev,V.V., Vavilin,V., Malygin,E.G., Bur'ianov,I., 1989. [Interaction between Eco dam methylase and double-stranded oligodeoxyribonucleotide]. Dokl. Akad. Nauk SSSR 304, 231-234.
Tuzikov,F.V., Zinoviev,V.V., Vavilin,V.I., Malygin,E.G., 1996. Application of the small-angle X-ray scattering technique for the study of two-step equilibrium enzyme-substrate interactions. Biopolymers 38, 131-139.
Urieli-Shoval,S., Gruenbaum,Y., Razin,A., 1983. Sequence and substrate specificity of isolated DNA methylases from Escherichia coli C. J. Bacteriol. 153, 274-280.
Urig,S., Gowher,H., Hermann,A., Beck,C., Fatemi,M., Humeny,A., Jeltsch,A., 2002. The Escherichia coli dam DNA methyltransferase modifies DNA in a highly processive reaction. J. Mol. Biol. 319, 1085-1096.
van der Woude,M.W., Braaten,B.A., Low,D.A., 1992. Evidence for global regulatory control of pilus expression in Escherichia coli by Lrp and DNA methylation: model building based on analysis of pap. Mol. Microbiol. 6, 2429-2435.
van der Woude,M.W., Low,D.A., 1994. Leucine-responsive regulatory protein and deoxyadenosine methylase control the phase variation and expression of the sfa and daa pili operons in Escherichia coli. Mol. Microbiol. 11, 605-618.
van der,W.M., Hale,W.B., Low,D.A., 1998. Formation of DNA methylation patterns: nonmethylated GATC sequences in gut and pap operons. J. Bacteriol. 180, 5913-5920.
van Putten,A.J., de Lang,R., Veltkamp,E., Nijkamp,H.J., Van Solingen,P., van den Berg,J.A., 1986. Methylation-dependent transcription controls plasmid replication of the CloDF13 cop-1(Ts) mutant. J. Bacteriol. 168, 728-733.
van Steensel,B., Henikoff,S., 2000. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat. Biotechnol. 18, 424-428.
Venozhinskis,M.T., Nesterenko,V.F., Kanopkaite,S.I., Bur'ianov,I., 1985. [Effect of 5-azacytidine on E. coli cells with different DNA-methylases]. Biokhimiia. 50, 749-754.
Vilpo,J.A., Vilpo,L.M., 1995. Restriction, methylation and ligation of 5-hydroxymethyluracil-containing DNA. Mutat. Res. 316, 123-131.
Vinella,D., Jaffe,A., D'Ari,R., Kohiyama,M., Hughes,P., 1992. Chromosome partitioning in Escherichia coli in the absence of dam-directed methylation. J. Bacteriol. 174, 2388-2390.
Vogel MJ, Peric-Hupkes D, van Steensel B. Detection of in vivo protein-DNA interactions using DamID in mammalian cells. Nat Protoc. 2007;2(6):1467-78. PubMed PMID: 17545983.
von Freiesleben,U., Rasmussen,K.V., 1992. The level of supercoiling affects the regulation of DNA replication in Escherichia coli. Res. Microbiol. 143, 655-663.
von Freiesleben,U., Rasmussen,K.V., Schaechter,M., 1994. SeqA limits DnaA activity in replication from oriC in Escherichia coli. Mol. Microbiol. 14, 763-772.
von Freiesleben,U., Krekling,M.A., Hansen,F.G., Lobner-Olesen,A., 2000. The eclipse period of Escherichia coli. EMBO J. 19, 6240-6248.
Wagar,E.A., Safarians,S., Pang,M., 1992. Analysis of genomic DNA from Chlamydia trachomatis for Dam and Dcm methylation. FEMS Microbiol. Lett. 77, 161-168.
Waldminghaus T, Weigel C, Skarstad K. Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res. 2012 Jul;40(12):5465-76. doi: 10.1093/nar/gks187. PubMed PMID: 22373925; PubMed Central PMCID: PMC3384311.
Waldron,D.E., Owen,P., Dorman,C.J., 2002. Competitive interaction of the OxyR DNA-binding protein and the Dam methylase at the antigen 43 gene regulatory region in Escherichia coli. Mol. Microbiol. 44, 509-520.
Wallecha,A., Munster,V., Correnti,J., Chan,T., van der,W.M., 2002. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J. Bacteriol. 184, 3338-3347.
Wallecha,A., Correnti,J., Munster,V., van der,W.M., 2003. Phase variation of Ag43 is independent of the oxidation state of OxyR. J. Bacteriol. 185, 2203-2209.
Wang,G., van Dam,A.P., Le Fleche,A., Postic,D., Peter,O., Baranton,G., de Boer,R., Spanjaard,L., Dankert,J., 1997. Genetic and phenotypic analysis of Borrelia valaisiana sp. nov. (Borrelia genomic groups VS116 and M19). Int. J. Syst. Bacteriol. 47, 926-932.
Wang,M.X., Church,G.M., 1992. A whole genome approach to in vivo DNA-protein interactions in E. coli. Nature 360, 606-610.
Wang,T.C., Smith,K.C., 1986. Inviability of dam recA and dam recB cells of Escherichia coli is correlated with their inability to repair DNA double-strand breaks produced by mismatch repair. J. Bacteriol. 165, 1023-1025.
Weigel,C., Schmidt,A., Ruckert,B., Lurz,R., Messer,W., 1997. DnaA protein binding to individual DnaA boxes in the Escherichia coli replication origin, oriC. EMBO J. 16, 6574-6583.
Weiner,M.P., Costa,G.L., Schoettlin,W., Cline,J., Mathur,E., Bauer,J.C., 1994. Site-directed mutagenesis of double-stranded DNA by the polymerase chain reaction. Gene 151, 119-123.
Weinreich,M.D., Reznikoff,W.S., 1992. Fis plays a role in Tn5 and IS50 transposition. J. Bacteriol. 174, 4530-4537.
Wenzel,C., Moulard,M., Lobner-Olesen,A., Guschlbauer,W., 1991. Crosslinking of Dam methyltransferase with S-adenosyl-methionine. FEBS Lett. 280, 147-151.
Wenzel,C., Guschlbauer,W., 1993. Dam methyltransferase from Escherichia coli: sequence of a peptide segment involved in S-adenosyl-methionine binding. Nucleic Acids Res. 21, 4604-4609.
Westphal LL, Sauvey P, Champion MM, Ehrenreich IM, Finkel SE. Genomewide Dam Methylation in Escherichia coli during Long-Term Stationary Phase. mSystems. 2016 Dec 13;1(6). pii: e00130-16. PubMed PMID: 27981240; PubMed Central PMCID: PMC5155068.
Weyand,N.J., Low,D.A., 2000. Regulation of Pap phase variation. Lrp is sufficient for the establishment of the phase off pap DNA methylation pattern and repression of pap transcription in vitro. J. Biol. Chem. 275, 3192-3200.
White-Ziegler,C.A., Black,A.M., Eliades,S.H., Young,S., Porter,K., 2002. The N-acetyltransferase RimJ responds to environmental stimuli to repress pap fimbrial transcription in Escherichia coli. J. Bacteriol. 184, 4334-4342.
Wines,D.R., Talbert,P.B., Clark,D.V., Henikoff,S., 1996. Introduction of a DNA methyltransferase into Drosophila to probe chromatin structure in vivo. Chromosoma 104, 332-340.
Wood RJ, Maynard-Smith MD, Robinson VL, Oyston PC, Titball RW, Roach PL. Kinetic analysis of Yersinia pestis DNA adenine methyltransferase activity using a hemimethylated molecular break light oligonucleotide. PLoS One. 2007 Aug 29;2(8):e801. PubMed PMID: 17726531; PubMed Central PMCID: PMC1949145.
Woodworth,D.L., Kreuzer,K.N., 1992. A system of transposon mutagenesis for bacteriophage T4. Mol. Microbiol. 6, 1289-1296.
Wu,T.H., Grelland,E., Boye,E., Marinus,M.G., 1992. Identification of a weak promoter for the dam gene of Escherichia coli. Biochim. Biophys. Acta 1131, 47-52.
Wu,T.H., Grelland,E., Boye,E., Marinus,M.G., 1992. Identification of a weak promoter for the dam gene of Escherichia coli [published erratum appears in Biochim Biophys Acta 1992 Sep 24;1132(2):231]. Biochim. Biophys. Acta 1131, 47-52.
Wyrzykowski,J., Volkert,M.R., 2003. The Escherichia coli methyl-directed mismatch repair system repairs base pairs containing oxidative lesions. J. Bacteriol. 185, 1701-1704.
Xu,S.Y., Schildkraut,I., 1993. Protecting recognition sequences on DNA by a cleavage-deficient restriction endonuclease. Biotechniques 15, 310-315.
Xiao R, Moore DD. DamIP: using mutant DNA adenine methyltransferase to study DNA-protein interactions in vivo. Curr Protoc Mol Biol. 2011 Apr;Chapter 21:Unit21.21. doi: 10.1002/0471142727.mb2121s94. PubMed PMID: 21472695; PubMed Central PMCID: PMC3085922.
Xiao R, Roman-Sanchez R, Moore DD. DamIP: a novel method to identify DNA binding sites in vivo. Nucl Recept Signal. 2010 Apr 16;8:e003. doi: 10.1621/nrs.08003. PubMed PMID: 20419059; PubMed Central PMCID: PMC2858267.
Xue Q, Zhang Y, Xu S, Li H, Wang L, Li R, Zhang Y, Yue Q, Gu X, Zhang S, Liu J, Wang H. Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Analyst. 2015 Nov 21;140(22):7637-44. doi: 10.1039/c5an01546d. PubMed PMID: 26421322.
Xue Q, Zhang Y, Xu S, Li H, Wang L, Li R, Zhang Y, Yue Q, Gu X, Zhang S, Liu J, Wang H. Magnetic nanoparticles-cooperated fluorescence sensor for sensitive and accurate detection of DNA methyltransferase activity coupled with exonuclease III-assisted target recycling. Analyst. 2015 Nov 21;140(22):7637-44. doi: 10.1039/c5an01546d. PubMed PMID: 26421322.
Xue Q, Lv Y, Xu S, Zhang Y, Wang L, Li R, Yue Q, Li H, Gu X, Zhang S, Liu J. Highly sensitive fluorescence assay of DNA methyltransferase activity by methylation-sensitive cleavage-based primer generation exponential isothermal amplification-induced G-quadruplex formation. Biosens Bioelectron. 2015 Apr 15;66:547-53. doi: 10.1016/j.bios.2014.12.017. PubMed PMID: 25506903.
Yallaly,P., Eisenstark,A., 1990. Influence of DNA adenine methylase on the sensitivity of Escherichia coli to near-ultraviolet radiation and hydrogen peroxide. Biochem. Biophys. Res. Commun. 169, 64-69.
Yamaki,H., Ohtsubo,E., Nagai,K., Maeda,Y., 1988. The oriC unwinding by dam methylation in Escherichia coli. Nucleic Acids Res. 16, 5067-5073.
Yang,H., Wolff,E., Kim,M., Diep,A., Miller,J.H., 2004. Identification of mutator genes and mutational pathways in Escherichia coli using a multicopy cloning approach. Mol. Microbiol. 53, 283-295.
Yang,M.K., Ser,S.C., Lee,C.H., 1989. Involvement of E. coli dcm methylase in Tn3 transposition. Proc. Natl. Sci. Counc. Repub. China [B] 13, 276-283.
Yin,J.C., Krebs,M.P., Reznikoff,W.S., 1988. Effect of dam methylation on Tn5 transposition. J. Mol. Biol. 199, 35-45.
Zaleski,P., Piekarowicz,A., 2004. Characterization of a dam mutant of Haemophilus influenzae Rd. Microbiology 150, 3773-3781.
Zaporozhets,D.A., Mironov,A.S., 1996. [Physical mapping of Escherichia coli genome rearrangements using pulsed-field gel electrophoresis and the PCR method]. Genetika 32, 23-34.
Zdraveski,Z.Z., Mello,J.A., Farinelli,C.K., Essigmann,J.M., Marinus,M.G., 2002. MutS preferentially recognizes cisplatin- over oxaliplatin-modified DNA. J. Biol. Chem. 277, 1255-1260.
Zell,R., Fritz,H.J., 1987. DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues. EMBO J. 6, 1809-1815.
Zhang R, Gu JD. Complete sequence of plasmid pMP1 from the marine environmental Vibrio vulnificus and location of its replication origin. Mar Biotechnol (NY). 2009 Jul-Aug;11(4):456-62. doi: 10.1007/s10126-008-9160-3. PubMed PMID: 19009320.
Zhang W, Zu X, Song Y, Zhu Z, Yang CJ. Detection of DNA methyltransferase activity using allosteric molecular beacons. Analyst. 2016 Jan 21;141(2):579-84. doi: 10.1039/c5an01763g. PubMed PMID: 26478921.
Zhang Y, Xue Q, Liu J, Wang H. Magnetic bead-liposome hybrids enable sensitive and portable detection of DNA methyltransferase activity using personal glucose meter. Biosens Bioelectron. 2017 Jan 15;87:537-544. doi: 10.1016/j.bios.2016.08.103. PubMed PMID: 27611472.
Zhou,B., Beckwith,D., Jarboe,L.R., Liao,J.C., 2005. Markov Chain modeling of pyelonephritis-associated pili expression in uropathogenic Escherichia coli. Biophys. J. 88, 2541-2553.
Zhou,P., Bogan,J.A., Welch,K., Pickett,S.R., Wang,H.J., Zaritsky,A., Helmstetter,C.E., 1997. Gene transcription and chromosome replication in Escherichia coli. J. Bacteriol. 179, 163-169.
Zieg,J., Maples,V.F., Kushner,S.R., 1978. Recombinant levels of Escherichia coli K-12 mutants deficient in various replication, recombination, or repair genes. J. Bacteriol. 134, 958-966.
Zinoviev VV, Evdokimov AA, Malygin EG, Sclavi B, Buckle M, Hattman S. Differential methylation kinetics of individual target site strands by T4Dam DNA methyltransferase. Biol Chem. 2007 Nov;388(11):1199-207. PubMed PMID: 17976013.
Zinov'ev,V.V., Ovechkina,L.G., Malygin,E.G., 1996. [Stoichiometry of phage T4 Dam-DNA-[N6-adenine]-methyltransferase binding with oligonucleotide substrates]. Mol. Biol. (Mosk) 30, 1203-1208.
Zinoviev,V.V., Evdokimov,A.A., Gorbunov,Y.A., Malygin,E.G., Kossykh,V.G., Hattman,S., 1998. Phage T4 DNA [N6-adenine] methyltransferase: kinetic studies using oligonucleotides containing native or modified recognition sites. Biol. Chem. 379, 481-488.
Zinoviev,V.V., Evdokimov,A.A., Malygin,E.G., Schlagman,S.L., Hattman,S., 2003. Bacteriophage T4 Dam DNA-(N6-adenine)-methyltransferase. Processivity and orientation to the methylation target. J. Biol. Chem. 278, 7829-7833.
Zotchev,S.B., Schrempf,H., Hutchinson,C.R., 1995. Identification of a methyl-specific restriction system mediated by a conjugative element from Streptomyces bambergiensis. J. Bacteriol. 177, 4809-4812.
Zyskind,J.W., Smith,D.W., 1980. Nucleotide sequence of the Salmonella typhimurium origin of DNA replication. Proc. Natl. Acad. Sci. U. S. A 77, 2460-2464.
Zyskind,J.W., Cleary,J.M., Brusilow,W.S., Harding,N.E., Smith,D.W., 1983. Chromosomal replication origin from the marine bacterium Vibrio harveyi functions in Escherichia coli: oriC consensus sequence. Proc. Natl. Acad. Sci. U. S. A 80, 1164-1168.