This formula is shown on the applet, along with the number we compute from it. Below this is another number, labeled as "Depth of Field" on the applet. This is the actual width of the pink-shaded diamond in object space, computed analytically from the construction lines. The difference between these two numbers highlights how much of an approximation the formula is at certain scales. To make the construction lines easy to understand, we've set the initial F-number to 0.5 and the initial circle of confusion to 20mm, but neither setting is reasonable for a real camera. If you change the F-number to 2.0, you'll find that the numbers nearly match.
Playing with depth of field
At long last, let's play with the applet. Drag the circle of confusion slider left and right. Notice the effect it has on depth of focus (on the right side of the lens) and depth of field (on the left). As the circle gets bigger the allowable blur size increases, and the range of depths we consider to be "in sharp focus" increases. For small circles of confusion the relationship is linear, as one would expect from the position of C in the depth of field formula - in the numerator and not raised to any power. As the circle gets very large the relationship becomes non-linear. At these sizes the formula we've given isn't accurate anymore.
Now reset the applet and try dragging the F-number slider left and right. Note that as the aperture closes down (larger F-numbers), the depth of field gets larger. Note also that one side of the depth of field is larger than the other. Beginning from the in-focus plane, more stuff is in good focus behind it than in front of it (relative to the camera). This asymmetry in depth of field is always true, regardless of lens settings, and it's something photographers come to learn by heart (and take advantage of). Finally, note that while N is not raised to any power in the depth of field formula, the width of the diamond seems to change non-linearly with slider motion. The reason for this is that for fixed focal length f, aperture diameter A is reciprocally related to N (through the formula N = f / A), and as the construction lines show, the width of the diamond really depends on A.
Reset the applet again and drag the focal length slider. Note that the depth of field changes dramatically with this slider, becoming especially large at short focal lengths, which corresponds to wide-angle lenses. This dramatic relationship arises from the fact that f appears in the denominator of the formula, and it's squared. Formally, we say that depth of field varies inversely quadratically with focal length. As photographers know, long focal length lenses have very shallow depth of field.
Now leave the focal length slider at 50mm and start playing with the subject distance slider. As the subject gets further away, the depth of field increases. Once again note that the change becomes dramatic at long subject distances. This arises from the fact that U appears squared in the (numerator of the) formula. In other words, depth of field varies quadratically with subject distance. Note also that for these settings of C, N, and f, when the subject distance rises above about 365mm, the far side of the depth of field (behind the in-focus plane relate to the camera) becomes infinite, hence the computed depth of field (called D.O.F. in the applet) says "Infinity".