Research Publications
2025
2025
96. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Saha S#, Sano FK#, Sharma S#, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigne A, Banerjee R*, Shihoya W*, Nureki O* and Shukla AK*. Molecular Cell, 2025 (in press).
96. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Saha S#, Sano FK#, Sharma S#, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigne A, Banerjee R*, Shihoya W*, Nureki O* and Shukla AK*. Molecular Cell, 2025 (in press).
2024
2024
95. Bound by the love for cholesterol: A transporter meets a GPCR. Tiwari D, Roy N and Shukla AK*. Cell, 2024, Nov 14;187(23):6518-6520.
95. Bound by the love for cholesterol: A transporter meets a GPCR. Tiwari D, Roy N and Shukla AK*. Cell, 2024, Nov 14;187(23):6518-6520.
94. An orphan to the rescue of obesity and steatotic liver? Jain S* and Shukla AK*. Trends in Endocrinology and Metabolism, 2024, Sep;35(9):761-762.
94. An orphan to the rescue of obesity and steatotic liver? Jain S* and Shukla AK*. Trends in Endocrinology and Metabolism, 2024, Sep;35(9):761-762.
93. Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Saha S#, Khanppnavar B#, Maharana J#, Kim J, Carino CMC, Daly C, Houston S, Sharma S, Zaidi N, Dalal A, Mishra S, Ganguly M, Tiwari D, Kumari P, Jhingan GD, Yadav PN, Plouffe B, Inoue A, Chung KY, Banerjee R*, Korkhov VM* and Shukla AK*. Cell, 2024, Aug 22;187(17):4751-4769.
93. Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Saha S#, Khanppnavar B#, Maharana J#, Kim J, Carino CMC, Daly C, Houston S, Sharma S, Zaidi N, Dalal A, Mishra S, Ganguly M, Tiwari D, Kumari P, Jhingan GD, Yadav PN, Plouffe B, Inoue A, Chung KY, Banerjee R*, Korkhov VM* and Shukla AK*. Cell, 2024, Aug 22;187(17):4751-4769.
92. Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution. Yadav M#, Sarma P#, Maharana J, Ganguly M, Mishra S, Zaidi N, Dalal A, Singh V, Saha S, Mahajan G, Sharma S, Chami M, Banerjee R* and Shukla AK*. Nature Communications, 2024 Mar 2;15(1):1939.
92. Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution. Yadav M#, Sarma P#, Maharana J, Ganguly M, Mishra S, Zaidi N, Dalal A, Singh V, Saha S, Mahajan G, Sharma S, Chami M, Banerjee R* and Shukla AK*. Nature Communications, 2024 Mar 2;15(1):1939.
91. Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors. Maharana J#, Sano F#, Sarma P#, Yadav M, Longhan D, Stepniewski TM, Chaturvedi M, Ranjan A, Singh V, Saha S, Mahajan G, Chami M, Shihoya W, Selent J, Chung KY, Banerjee R*, Nureki O* and Shukla AK*. Science, 2024 Jan 5;383(6678):101-108.
91. Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors. Maharana J#, Sano F#, Sarma P#, Yadav M, Longhan D, Stepniewski TM, Chaturvedi M, Ranjan A, Singh V, Saha S, Mahajan G, Chami M, Shihoya W, Selent J, Chung KY, Banerjee R*, Nureki O* and Shukla AK*. Science, 2024 Jan 5;383(6678):101-108.
2023
2023
90. Molecular basis of anaphylatoxin recognition, activation, and signaling-bias at complement receptors. Yadav MK#, Maharana J#, Yadav R#, Saha S#, Sarma P#, Soni S, Singh V, Saha S, Ganguly M, Li XX, Mahapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R*, Shukla AK* and Gati C*. Cell, 2023, Oct 26;186(22):4956-4973.e21.
90. Molecular basis of anaphylatoxin recognition, activation, and signaling-bias at complement receptors. Yadav MK#, Maharana J#, Yadav R#, Saha S#, Sarma P#, Soni S, Singh V, Saha S, Ganguly M, Li XX, Mahapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R*, Shukla AK* and Gati C*. Cell, 2023, Oct 26;186(22):4956-4973.e21.
89. Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system. Sarma P, Carino CMC, Seetharama D, Pandey S, Dwivedi-Agnihotri H, Rui X, Cao Y, Kawakami K, Kumari P, Chen Y-C, Luker KE, Yadav PN, Luker GD, Laporte SA, Chen X, Inoue A and Shukla AK* Nature Communications, 2023, Aug 9;14(1):4808.
89. Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system. Sarma P, Carino CMC, Seetharama D, Pandey S, Dwivedi-Agnihotri H, Rui X, Cao Y, Kawakami K, Kumari P, Chen Y-C, Luker KE, Yadav PN, Luker GD, Laporte SA, Chen X, Inoue A and Shukla AK* Nature Communications, 2023, Aug 9;14(1):4808.
88. A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes. Isaikina P, Petrovic I, Jakob RP, Sarma P, Ranjan A, Baruah M, Panwalkar V, Maier T, Shukla AK* and Grzesiek S*. Molecular Cell, 2023 Jun 15;83(12):2108-2121.e7.
88. A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes. Isaikina P, Petrovic I, Jakob RP, Sarma P, Ranjan A, Baruah M, Panwalkar V, Maier T, Shukla AK* and Grzesiek S*. Molecular Cell, 2023 Jun 15;83(12):2108-2121.e7.
87. Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Maharana J#, Sarma P#, Yadav MK, Saha S, Singh V, Saha S, Chami M, Banerjee R* and Shukla AK*. Molecular Cell, 2023 Jun 15;83(12):2091-2107.e7.
87. Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Maharana J#, Sarma P#, Yadav MK, Saha S, Singh V, Saha S, Chami M, Banerjee R* and Shukla AK*. Molecular Cell, 2023 Jun 15;83(12):2091-2107.e7.
86. Plasma membrane preassociation drives beta-arrestin coupling to receptors and activation. Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O’Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ and Calebiro D. Cell, 2023 May 11;186(10):2238-2255.e20.
86. Plasma membrane preassociation drives beta-arrestin coupling to receptors and activation. Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O’Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ and Calebiro D. Cell, 2023 May 11;186(10):2238-2255.e20.
85. Structural snapshot of a β-arrestin-biased receptor. Sarma P, Banerjee R and Shukla AK*. Trends in Pharmacological Sciences, 2023, Jan;44(1):1-3.
85. Structural snapshot of a β-arrestin-biased receptor. Sarma P, Banerjee R and Shukla AK*. Trends in Pharmacological Sciences, 2023, Jan;44(1):1-3.
2022
2022
84. A streamlined protocol for expression and purification of wild-type β-arrestins. Yadav MK, Singh V, Saha S and Shukla AK*. Methods in Enzymology, 2022 (in press).
84. A streamlined protocol for expression and purification of wild-type β-arrestins. Yadav MK, Singh V, Saha S and Shukla AK*. Methods in Enzymology, 2022 (in press).
83. Resonating with the signaling bias of CXCR7. Sarma P and Shukla AK*. Molecular Cell, 2022, Sep 15;82(18):3318-3320.
83. Resonating with the signaling bias of CXCR7. Sarma P and Shukla AK*. Molecular Cell, 2022, Sep 15;82(18):3318-3320.
82. Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody. Baidya M, Chaturvedi M, Dwivedi-Agnihotri H, Ranjan A, Devost D, Namkung Y, Stepniewski TM, Pandey S, Baruah M, Panigrahi B, Sarma P, Yadav MK, Maharana J, Banerjee R, Kawakami K, Inoue A, Selent J, Laporte SA, Hébert TE and Shukla AK*. Nature Communications, 2022, Aug 8;13(1):4634.
82. Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody. Baidya M, Chaturvedi M, Dwivedi-Agnihotri H, Ranjan A, Devost D, Namkung Y, Stepniewski TM, Pandey S, Baruah M, Panigrahi B, Sarma P, Yadav MK, Maharana J, Banerjee R, Kawakami K, Inoue A, Selent J, Laporte SA, Hébert TE and Shukla AK*. Nature Communications, 2022, Aug 8;13(1):4634.
81. Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes. Maharana J, Banerjee R, Yadav M, Sarma P and Shukla AK. Current opinion in Structural Biology, 2022, Jun 20;75:102406.
81. Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes. Maharana J, Banerjee R, Yadav M, Sarma P and Shukla AK. Current opinion in Structural Biology, 2022, Jun 20;75:102406.
80. Making the switch: The role of Gq in driving GRK selectivity at GPCRs. Sarma P, Saha S and Shukla AK. Science Signaling, 2022, Mar 22;15(726):eabo4949.
80. Making the switch: The role of Gq in driving GRK selectivity at GPCRs. Sarma P, Saha S and Shukla AK. Science Signaling, 2022, Mar 22;15(726):eabo4949.
79. IUPHAR community guidelines for GPCR ligand bias. Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Ehlert F, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME and Gloriam DE. British Journal of Pharmacology, 2022, Jul;179(14):3651-3674.
79. IUPHAR community guidelines for GPCR ligand bias. Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Ehlert F, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME and Gloriam DE. British Journal of Pharmacology, 2022, Jul;179(14):3651-3674.
78. Scratching the itch with cryo-EM. Maharana J, Sarma P and Shukla AK. Nature Chemical Biology, 2022, Mar;18(3):242-243.
78. Scratching the itch with cryo-EM. Maharana J, Sarma P and Shukla AK. Nature Chemical Biology, 2022, Mar;18(3):242-243.
77. In-cellulo chemical cross-linking to visualize protein-protein interactions. Saha S, Ranjan A, Godara M and Shukla AK. Methods in Cell Biology, 2022;169:295-307.
77. In-cellulo chemical cross-linking to visualize protein-protein interactions. Saha S, Ranjan A, Godara M and Shukla AK. Methods in Cell Biology, 2022;169:295-307.
76. An Intrabody sensor to monitor conformational activation of β-arrestins. Dwivedi-Agnihotri H, Sarma P, Deeksha S, Kawakami K, Inoue A and Shukla AK. Methods in Cell Biology, 2022;169:267-278.
76. An Intrabody sensor to monitor conformational activation of β-arrestins. Dwivedi-Agnihotri H, Sarma P, Deeksha S, Kawakami K, Inoue A and Shukla AK. Methods in Cell Biology, 2022;169:267-278.
2021
2021
75. Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR. Shiraishi Y, Kofuku Y, Ueda T, Pandey S, Dwivedi-Agnihotri H, Shukla AK and Shimada I. Nature Communications, 2021, Dec 9;12(1):7158.
75. Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR. Shiraishi Y, Kofuku Y, Ueda T, Pandey S, Dwivedi-Agnihotri H, Shukla AK and Shimada I. Nature Communications, 2021, Dec 9;12(1):7158.
74. Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Pandey S, Kumari P, Baidya M, Kise R, Cao Y, Dwivedi-Agnihotri H, Banerjee R, Li XX, Cui CS, Lee JD, Kawakami K, Maharana J, Ranjan A, Chaturvedi M, Jhingan JD, Laporte SA, Woodruff TM, Inoue A and Shukla AK. Molecular Cell, 2021, Nov 18;81(22):4605-4621.e11.
74. Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Pandey S, Kumari P, Baidya M, Kise R, Cao Y, Dwivedi-Agnihotri H, Banerjee R, Li XX, Cui CS, Lee JD, Kawakami K, Maharana J, Ranjan A, Chaturvedi M, Jhingan JD, Laporte SA, Woodruff TM, Inoue A and Shukla AK. Molecular Cell, 2021, Nov 18;81(22):4605-4621.e11.
** Highlighted by Science Signaling **
** Highlighted by Science Signaling **
** Highlighted by Molecular Cell with Meet the Authors Feature **
** Highlighted by Molecular Cell with Meet the Authors Feature **
73. Structural insights into ligand recognition and activation of angiotensin receptors. Zhang H, Luginina A, Mishin A, Baidya M, Shukla AK and Cherezov V. Trends in Pharmacological Sciences, 2021, May 10:S0165-6147(21)00076-6.
73. Structural insights into ligand recognition and activation of angiotensin receptors. Zhang H, Luginina A, Mishin A, Baidya M, Shukla AK and Cherezov V. Trends in Pharmacological Sciences, 2021, May 10:S0165-6147(21)00076-6.
** COVER PAGE ARTICLE **
** COVER PAGE ARTICLE **
72. Feeling at home: Structure of the NTSR1-Gi complex in lipid environment. Maharana J and Shukla AK. Nature Structural and Molecular Biology, 2021, Apr;28(4):331-333.
72. Feeling at home: Structure of the NTSR1-Gi complex in lipid environment. Maharana J and Shukla AK. Nature Structural and Molecular Biology, 2021, Apr;28(4):331-333.
71. Biased ligands at opioid receptors: Current status and future directions. Che T, Dwivedi-Agnihotri H, Shukla AK and Roth BL. Science Signaling, 2021, Apr 6;14(677):eaav0320.
71. Biased ligands at opioid receptors: Current status and future directions. Che T, Dwivedi-Agnihotri H, Shukla AK and Roth BL. Science Signaling, 2021, Apr 6;14(677):eaav0320.
2020
2020
70. The complement C5a-C5aR1 GPCR axis in COVID19 therapeutics. Woodruff TW and Shukla AK*. Trends in Immunology, 2020 Sep 23:S1471-4906(20)30229-5.
70. The complement C5a-C5aR1 GPCR axis in COVID19 therapeutics. Woodruff TW and Shukla AK*. Trends in Immunology, 2020 Sep 23:S1471-4906(20)30229-5.
69. Transmitting the signal: Structure of the β1-adrenergic receptor-Gs protein complex. Pandey S, Saha S and Shukla AK*. Molecular Cell, 2020, Oct 1;80(1):3-5.
69. Transmitting the signal: Structure of the β1-adrenergic receptor-Gs protein complex. Pandey S, Saha S and Shukla AK*. Molecular Cell, 2020, Oct 1;80(1):3-5.
68. Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking and signaling. Dwivedi-Agnihotri H, Chaturvedi M, Baidya M, Stepniewski TM, Pandey S, Maharana J, Srivastava A, Caengprasath N, Hanyaloglu A, Selent J and Shukla AK. Science Advances, 2020, Sep 11, Vol. 6, no. 37, eabb8368.
68. Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking and signaling. Dwivedi-Agnihotri H, Chaturvedi M, Baidya M, Stepniewski TM, Pandey S, Maharana J, Srivastava A, Caengprasath N, Hanyaloglu A, Selent J and Shukla AK. Science Advances, 2020, Sep 11, Vol. 6, no. 37, eabb8368.
67. Key phosphorylation sites in GPCRs orchestrate the contribution of β-Arrestin 1 in ERK1/2 activation. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Chaturvedi M, Stepniewski TM, Kawakami K, Cao Y, Laporte SA, Selent J, Inoue A and Shukla AK. EMBO Reports, 2020 Jul 26:e49886. doi: 10.15252/embr.201949886.
67. Key phosphorylation sites in GPCRs orchestrate the contribution of β-Arrestin 1 in ERK1/2 activation. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Chaturvedi M, Stepniewski TM, Kawakami K, Cao Y, Laporte SA, Selent J, Inoue A and Shukla AK. EMBO Reports, 2020 Jul 26:e49886. doi: 10.15252/embr.201949886.
** Highlighted in a News and Views article by Prof. Richard Premont published in EMBO Reports **
** Highlighted in a News and Views article by Prof. Richard Premont published in EMBO Reports **
66. Crystal structure of β-arrestin 2 in complex with CXCR7 phosphopeptide. Min K, Yoon HJ, Park JY, Baidya M, Dwivedi-Agnihotri H, Maharana J, Chaturvedi M, Chung KY, Shukla AK and Lee HH. Structure, 2020 Jun 19:S0969-2126(20)30205-7.
66. Crystal structure of β-arrestin 2 in complex with CXCR7 phosphopeptide. Min K, Yoon HJ, Park JY, Baidya M, Dwivedi-Agnihotri H, Maharana J, Chaturvedi M, Chung KY, Shukla AK and Lee HH. Structure, 2020 Jun 19:S0969-2126(20)30205-7.
** COVER PAGE ARTICLE **
** COVER PAGE ARTICLE **
65. Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein–coupled receptors. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Sokrat B, Sposini S, Chaturvedi M, Srivastava A, Roy D, Hanyaloglu AH, Bouvier M and Shukla AK. Journal of Biological Chemistry, 2020 May 21:jbc.RA120.013470. doi: 10.1074/jbc.RA120.013470.
65. Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein–coupled receptors. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Sokrat B, Sposini S, Chaturvedi M, Srivastava A, Roy D, Hanyaloglu AH, Bouvier M and Shukla AK. Journal of Biological Chemistry, 2020 May 21:jbc.RA120.013470. doi: 10.1074/jbc.RA120.013470.
** Amongst top 50 most viewed papers in the journal during May-June 2020 **
** Amongst top 50 most viewed papers in the journal during May-June 2020 **
** Selected as the Paper of the Year in Signal-transduction category by the journal for 2020 **
64. Emerging insights into the structure and function of complement C5a receptors. Pandey S, Maharana J, Li XX, Woodruff TM and Shukla AK. Trends in Biochemical Sciences, 2020 May 10:S0968-0004(20)30107-9. doi: 10.1016/j.tibs.2020.04.004.
63. Calcium as a biased cofactor. Chaturvedi M and Shukla AK. Science, 2020 April 24;368(6489):369-370.
62. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK and Tate CG. Nature, 2020 Jul;583(7818):862-866.
62. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK and Tate CG. Nature, 2020 Jul;583(7818):862-866.
** Highlighted in a Spotlight article by Prof. Jeffrey Benovic published in Trends in Pharmacological Sciences **
** Highlighted in a Spotlight article by Prof. Jeffrey Benovic published in Trends in Pharmacological Sciences **
** Highlighted by Prof. Patrick Sexton in F1000 prime **
** Highlighted by Prof. Patrick Sexton in F1000 prime **
61. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes. Chaturvedi M, Maharana J and Shukla AK. Cell, 2020 Mar 19;180(6):1041-1043.
61. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes. Chaturvedi M, Maharana J and Shukla AK. Cell, 2020 Mar 19;180(6):1041-1043.
60. Purification of native CCL7 and its functional interaction with selected chemokine receptors. Goncharuk MV, Roy D, Dubinnyi MA, Nadezhdin KD, Srivastava A, Baidya M, Agnihotri-Dwivedi H, Arseniev AS and Shukla AK. Protein Expression and Purification, 2020 Jul;171:105617. doi: 10.1016/j.pep.2020.105617.
60. Purification of native CCL7 and its functional interaction with selected chemokine receptors. Goncharuk MV, Roy D, Dubinnyi MA, Nadezhdin KD, Srivastava A, Baidya M, Agnihotri-Dwivedi H, Arseniev AS and Shukla AK. Protein Expression and Purification, 2020 Jul;171:105617. doi: 10.1016/j.pep.2020.105617.
59. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Shukla AK and Dwivedi-Agnihotri H. Advances in Cancer Research, 2020;145:139-156.
59. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Shukla AK and Dwivedi-Agnihotri H. Advances in Cancer Research, 2020;145:139-156.
58. Site-directed labeling of β-arrestins with monobromobimane for measuring their interaction with G protein-coupled receptors. Srivastava A, Baidya M, Agnihotri-Dwivedi H and Shukla AK. Methods in Enzymology, 2020, 633:271-280.
58. Site-directed labeling of β-arrestins with monobromobimane for measuring their interaction with G protein-coupled receptors. Srivastava A, Baidya M, Agnihotri-Dwivedi H and Shukla AK. Methods in Enzymology, 2020, 633:271-280.
57. Reversible biotinylation of purified proteins for measuring protein-protein interaction. Agnihotri-Dwivedi H, Srivastava A and Shukla AK. Methods in Enzymology, 2020, 633:281-294.
57. Reversible biotinylation of purified proteins for measuring protein-protein interaction. Agnihotri-Dwivedi H, Srivastava A and Shukla AK. Methods in Enzymology, 2020, 633:281-294.
56. The inside story: Crystal structure of the chemokine receptor CCR7 with an intracellular allosteric antagonist. Saha S and Shukla AK. Biochemistry, 2020, Jan 14;59(1):12-14.
56. The inside story: Crystal structure of the chemokine receptor CCR7 with an intracellular allosteric antagonist. Saha S and Shukla AK. Biochemistry, 2020, Jan 14;59(1):12-14.
2019
2019
55. Conformational sensors and domain-swapping reveal structural and functional differences between arrestin isoforms. Ghosh E, Dwivedi H, Baidya M, Srivastava A, Kumari P, Stepniewski T, Kim HY, Lee MH, Gastel JV, Chaturvedi M, Roy D, Pandey S, Maharana J, Ganzalez RY, Luttrell LM, Chung KY, Dutta S, Selent J and Shukla AK. Cell Reports, 2019, Vol 28, Issue 13, P3287-3299.
55. Conformational sensors and domain-swapping reveal structural and functional differences between arrestin isoforms. Ghosh E, Dwivedi H, Baidya M, Srivastava A, Kumari P, Stepniewski T, Kim HY, Lee MH, Gastel JV, Chaturvedi M, Roy D, Pandey S, Maharana J, Ganzalez RY, Luttrell LM, Chung KY, Dutta S, Selent J and Shukla AK. Cell Reports, 2019, Vol 28, Issue 13, P3287-3299.
** Highlighted by Prof. Marta Filizola in F1000 prime **
** Highlighted by Prof. Marta Filizola in F1000 prime **
54. The Gut Feeling: GPCRs enlighten the way. Pandey S, Maharana J and Shukla AK. Cell Host Microbe, 2019, Vol 26, Issue 2, P160-162.
54. The Gut Feeling: GPCRs enlighten the way. Pandey S, Maharana J and Shukla AK. Cell Host Microbe, 2019, Vol 26, Issue 2, P160-162.
53. Partial ligand-receptor engagement yields functional bias at the human complement receptor, C5aR1. Pandey S, Li XX, Srivastava A, Baidya M, Kumari P, Dwivedi H, Chaturvedi M, Ghosh E, Woodruff TM and Shukla AK. Journal of Biological Chemistry, 2019, Jun 14;294(24):9416-9429.
53. Partial ligand-receptor engagement yields functional bias at the human complement receptor, C5aR1. Pandey S, Li XX, Srivastava A, Baidya M, Kumari P, Dwivedi H, Chaturvedi M, Ghosh E, Woodruff TM and Shukla AK. Journal of Biological Chemistry, 2019, Jun 14;294(24):9416-9429.
52. Measuring surface expression and endocytosis of GPCRs using whole-cell ELISA. Pandey S, Roy D and Shukla AK. Methods in Cell Biology, 2019;149:131-140.
52. Measuring surface expression and endocytosis of GPCRs using whole-cell ELISA. Pandey S, Roy D and Shukla AK. Methods in Cell Biology, 2019;149:131-140.
51. Measuring agonist-induced ERK MAP kinase phosphorylation for G protein-coupled receptors. Kumari P, Dwivedi H, Baidya M and Shukla AK. Methods in Cell Biology, 2019,149:141-153.
51. Measuring agonist-induced ERK MAP kinase phosphorylation for G protein-coupled receptors. Kumari P, Dwivedi H, Baidya M and Shukla AK. Methods in Cell Biology, 2019,149:141-153.
50. Structural basis of partial-agonism at the beta2-adrenergic receptor. Shula AK. Biochemistry, 2019, Jan 22;58(3):137-139.
50. Structural basis of partial-agonism at the beta2-adrenergic receptor. Shula AK. Biochemistry, 2019, Jan 22;58(3):137-139.
2018
2018
49. Entering the pocket: Crystal structure of a prostaglandin D2 receptor. Baidya M, Kumari P and Shukla AK. Molecular Cell, 2018, Oct 4;72(1):3-6.
49. Entering the pocket: Crystal structure of a prostaglandin D2 receptor. Baidya M, Kumari P and Shukla AK. Molecular Cell, 2018, Oct 4;72(1):3-6.
48. Illuminating GPCR signaling by cryo-EM. Safdari AH, Pandey S, Shukla AK and Dutta S. Trends in Cell Biology, 2018, Aug;28(8):591-594.
48. Illuminating GPCR signaling by cryo-EM. Safdari AH, Pandey S, Shukla AK and Dutta S. Trends in Cell Biology, 2018, Aug;28(8):591-594.
47. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Sente A, Peer R, Srivastava A, Baidya M, Lesk A, Santhanam B, Shukla AK, Babu MM and Flock T. Nature Structure & Molecular Biology, 2018, June; 25(6):538-545.
47. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Sente A, Peer R, Srivastava A, Baidya M, Lesk A, Santhanam B, Shukla AK, Babu MM and Flock T. Nature Structure & Molecular Biology, 2018, June; 25(6):538-545.
** Accompanied by a News & Views article by Prof. Arthur Christopoulos in the same issue **
** Accompanied by a News & Views article by Prof. Arthur Christopoulos in the same issue **
** Highlighted by Prof. Bryan L. Roth in F1000 prime **
** Highlighted by Prof. Bryan L. Roth in F1000 prime **
46. Emerging paradigm of intracellular targeting of GPCRs. Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL and Shukla AK. Trends in Biochemical Sciences, 2018, Jul;43(7):533-546.
46. Emerging paradigm of intracellular targeting of GPCRs. Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL and Shukla AK. Trends in Biochemical Sciences, 2018, Jul;43(7):533-546.
45. GPCR signaling: The interplay of Gαi and β-arrestin. Dwivedi H, Baidya M and Shukla AK. Current Biology, 2018, Apr 2;28(7):R324-327.
45. GPCR signaling: The interplay of Gαi and β-arrestin. Dwivedi H, Baidya M and Shukla AK. Current Biology, 2018, Apr 2;28(7):R324-327.
2017
2017
44. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. Ghosh E, Srivastava A, Baidya M, Kumari P, Dwivedi H, Nidhi K, Ranjan R, Dogra S, Koide A, Yadav PN, Sidhu SS, Koide S, and Shukla AK. Nature Nanotechnology, 2017, Dec:12(12):1190-1198.
44. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. Ghosh E, Srivastava A, Baidya M, Kumari P, Dwivedi H, Nidhi K, Ranjan R, Dogra S, Koide A, Yadav PN, Sidhu SS, Koide S, and Shukla AK. Nature Nanotechnology, 2017, Dec:12(12):1190-1198.
43. Novel insights into GPCR-b-arrestin interaction and signaling. Ranjan R, Dwivedi H, Baidya M, Kumar M and Shukla AK. Trends in Cell Biology, 2017, Nov;27(11):851-862.
43. Novel insights into GPCR-b-arrestin interaction and signaling. Ranjan R, Dwivedi H, Baidya M, Kumar M and Shukla AK. Trends in Cell Biology, 2017, Nov;27(11):851-862.
42. Frozen in action: cryo-EM structure of a GPCR-G-protein complex. Baidya M, Dwivedi H and Shukla AK. Nature Structure & Molecular Biology, 2017 Jun 6;24(6):500-502.
42. Frozen in action: cryo-EM structure of a GPCR-G-protein complex. Baidya M, Dwivedi H and Shukla AK. Nature Structure & Molecular Biology, 2017 Jun 6;24(6):500-502.
41. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL, Gavino BJ, Lamerdin JE, Triest S, Shukla AK, Berger B, Little J 4th, Antar A, Blanc A, Qu CX, Chen X, Kawakami K, Inoue A, Aoki J, Steyaert J, Sun JP, Bouvier M, Skiniotis G, Lefkowitz RJ. Proceedings of the National academy of sciences, U S A. 2017 Mar 7;114(10):2562-2567.
41. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL, Gavino BJ, Lamerdin JE, Triest S, Shukla AK, Berger B, Little J 4th, Antar A, Blanc A, Qu CX, Chen X, Kawakami K, Inoue A, Aoki J, Steyaert J, Sun JP, Bouvier M, Skiniotis G, Lefkowitz RJ. Proceedings of the National academy of sciences, U S A. 2017 Mar 7;114(10):2562-2567.
40. Core engagement with β-arrestin is dispensable for agonist induced vasopressin receptor endocytosis and ERK activation. Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav PN, and Shukla AK. Molecular Biology of The Cell, 2017 Apr 15;28(8):1003-1010.
40. Core engagement with β-arrestin is dispensable for agonist induced vasopressin receptor endocytosis and ERK activation. Kumari P, Srivastava A, Ghosh E, Ranjan R, Dogra S, Yadav PN, and Shukla AK. Molecular Biology of The Cell, 2017 Apr 15;28(8):1003-1010.
39. Biased Opioid Receptor Ligands: Gain without Pain. Ranjan R, Pandey S, Shukla AK. Trends in Endocrinology & Metabolism, 2017 Apr;28(4):247-249.
39. Biased Opioid Receptor Ligands: Gain without Pain. Ranjan R, Pandey S, Shukla AK. Trends in Endocrinology & Metabolism, 2017 Apr;28(4):247-249.
2016
2016
38. Functional competence of a partially engaged GPCR-β-arrestin complex. Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C, Jaiman D and Shukla AK. Nature Communications. 2016 Nov 9;7:13416.
38. Functional competence of a partially engaged GPCR-β-arrestin complex. Kumari P, Srivastava A, Banerjee R, Ghosh E, Gupta P, Ranjan R, Chen X, Gupta B, Gupta C, Jaiman D and Shukla AK. Nature Communications. 2016 Nov 9;7:13416.
37. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Sunahara RK, Skiniotis G, Bouvier M and Lefkowitz RJ. Cell. 2016 Aug 11;166(4):907-19.
37. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Sunahara RK, Skiniotis G, Bouvier M and Lefkowitz RJ. Cell. 2016 Aug 11;166(4):907-19.
** Highlighted in Trends in Biochemical Sciences with a Spotlight piece by Dr. Fiona Marshall **
** Highlighted in Trends in Biochemical Sciences with a Spotlight piece by Dr. Fiona Marshall **
36. GPCR Signaling: β-arrestins Kiss and Remember. Ranjan R, Gupta P, Shukla AK. Current Biology. 2016 Apr 4;26(7):R285-R288.
36. GPCR Signaling: β-arrestins Kiss and Remember. Ranjan R, Gupta P, Shukla AK. Current Biology. 2016 Apr 4;26(7):R285-R288.
2015
2015
35. Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Kumari P, Ghosh E, Shukla AK. Trends in Molecular Medicine. 2015 Nov;21(11):687-701.
35. Emerging Approaches to GPCR Ligand Screening for Drug Discovery. Kumari P, Ghosh E, Shukla AK. Trends in Molecular Medicine. 2015 Nov;21(11):687-701.
34. Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function. Srivastava A, Gupta B, Gupta C, Shukla AK. Trends in Endocrinology and Metabolism. 2015 Nov;26(11):628-42.
34. Emerging Functional Divergence of β-Arrestin Isoforms in GPCR Function. Srivastava A, Gupta B, Gupta C, Shukla AK. Trends in Endocrinology and Metabolism. 2015 Nov;26(11):628-42.
33. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes. Shukla AK, Gupta C, Srivastava A, Jaiman D. Methods in Enzymology. 2015;557:247-58.
33. Antibody fragments for stabilization and crystallization of G protein-coupled receptors and their signaling complexes. Shukla AK, Gupta C, Srivastava A, Jaiman D. Methods in Enzymology. 2015;557:247-58.
32. From Recombinant Expression to Crystals: A Step-by-Step Guide to GPCR Crystallography. Shukla AK, Kumari P, Ghosh E, Nidhi K. Methods Enzymol. 2015;556:549-61.
32. From Recombinant Expression to Crystals: A Step-by-Step Guide to GPCR Crystallography. Shukla AK, Kumari P, Ghosh E, Nidhi K. Methods Enzymol. 2015;556:549-61.
31. Methodological advances: the unsung heroes of the GPCR structural revolution. Ghosh E, Kumari P, Jaiman D, Shukla AK. Nature Reviews Molecular Cell Biology 2015 Feb;16(2):69-81.
31. Methodological advances: the unsung heroes of the GPCR structural revolution. Ghosh E, Kumari P, Jaiman D, Shukla AK. Nature Reviews Molecular Cell Biology 2015 Feb;16(2):69-81.
** COVER PAGE ARTICLE **
** COVER PAGE ARTICLE **
2014
2014
30. SnapShot: GPCR-Ligand Interactions. Ghosh E, Nidhi K, Shukla AK. Cell. 2014 Dec 18;159(7):1712-1712.e1.
30. SnapShot: GPCR-Ligand Interactions. Ghosh E, Nidhi K, Shukla AK. Cell. 2014 Dec 18;159(7):1712-1712.e1.
29. Emerging structural insights into biased GPCR signaling. Shukla AK, Singh, G and Ghosh, E. Trends in Biochemical Sciences. 2014, Volume 39, Issue 12, p594–602.
29. Emerging structural insights into biased GPCR signaling. Shukla AK, Singh, G and Ghosh, E. Trends in Biochemical Sciences. 2014, Volume 39, Issue 12, p594–602.
28. Visualization of arrestin recruitment by a G-protein-coupled receptor. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods Jr VL, Kobilka BK, Skiniotis G, Lefkowitz RJ. Nature. 2014 Aug 14;512(7513):218-22.
28. Visualization of arrestin recruitment by a G-protein-coupled receptor. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods Jr VL, Kobilka BK, Skiniotis G, Lefkowitz RJ. Nature. 2014 Aug 14;512(7513):218-22.
2013
2013
26. Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I. ACS Medicinal Chemistry Letters. 2013 Oct 10;4(10):1005-1010.
26. Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I. ACS Medicinal Chemistry Letters. 2013 Oct 10;4(10):1005-1010.
25. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ. Nature. 2013 May 2;497(7447):137-41.
25. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ. Nature. 2013 May 2;497(7447):137-41.
2012
2012
24. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Annual Review of Pharmacology and Toxicology. 2012;52:179-97.
24. Molecular mechanism of β-arrestin-biased agonism at seven-transmembrane receptors. Reiter E, Ahn S, Shukla AK, Lefkowitz RJ. Annual Review of Pharmacology and Toxicology. 2012;52:179-97.
23. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2010 Aug 24;107(34):15299-304.
23. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2010 Aug 24;107(34):15299-304.
2011
2011
22. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ. Science Signaling. 2011 Aug 9;4(185):ra51.
22. Distinct phosphorylation sites on the β(2)-adrenergic receptor establish a barcode that encodes differential functions of β-arrestin. Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ. Science Signaling. 2011 Aug 9;4(185):ra51.
** COVER PAGE ARTICLE **
** COVER PAGE ARTICLE **
21. Multiple ligand-specific conformations of the β2-adrenergic receptor. Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ. Nature Chemical Biology. 2011 Aug 21;7(10):692-700.
21. Multiple ligand-specific conformations of the β2-adrenergic receptor. Kahsai AW, Xiao K, Rajagopal S, Ahn S, Shukla AK, Sun J, Oas TG, Lefkowitz RJ. Nature Chemical Biology. 2011 Aug 21;7(10):692-700.
20. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Shukla AK, Xiao K, Lefkowitz RJ. Trends in Biochemical Sciences. 2011 Sep;36(9):457-69.
20. Emerging paradigms of β-arrestin-dependent seven transmembrane receptor signaling. Shukla AK, Xiao K, Lefkowitz RJ. Trends in Biochemical Sciences. 2011 Sep;36(9):457-69.
2010
2010
19. Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ. Journal of Biological Chemistry. 2010 Sep 24;285(39):30115-25.
19. Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ. Journal of Biological Chemistry. 2010 Sep 24;285(39):30115-25.
** Selected as a Paper of the Week **
** Selected as a Paper of the Week **
18. beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. Mangmool S, Shukla AK, Rockman HA. Journal of Cell Biology. 2010 May 3;189(3):573-87.
18. beta-Arrestin-dependent activation of Ca(2+)/calmodulin kinase II after beta(1)-adrenergic receptor stimulation. Mangmool S, Shukla AK, Rockman HA. Journal of Cell Biology. 2010 May 3;189(3):573-87.
2009
2009
17. Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2009 Apr 21;106(16):6650-5.
17. Beta-arrestin-dependent signaling and trafficking of 7-transmembrane receptors is reciprocally regulated by the deubiquitinase USP33 and the E3 ligase Mdm2. Shenoy SK, Modi AS, Shukla AK, Xiao K, Berthouze M, Ahn S, Wilkinson KD, Miller WE, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2009 Apr 21;106(16):6650-5.
16. Beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. Walters RW, Shukla AK, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muehlbauer MJ, Whalen EJ, Lefkowitz RJ. Journal of Clinical Investigations. 2009 May;119(5):1312-21.
16. Beta-Arrestin1 mediates nicotinic acid-induced flushing, but not its antilipolytic effect, in mice. Walters RW, Shukla AK, Kovacs JJ, Violin JD, DeWire SM, Lam CM, Chen JR, Muehlbauer MJ, Whalen EJ, Lefkowitz RJ. Journal of Clinical Investigations. 2009 May;119(5):1312-21.
2008
2008
15. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2008 Jul 22;105(29):9988-93.
15. Distinct conformational changes in beta-arrestin report biased agonism at seven-transmembrane receptors. Shukla AK, Violin JD, Whalen EJ, Gesty-Palmer D, Shenoy SK, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2008 Jul 22;105(29):9988-93.
14. A crystal clear view of the beta2-adrenergic receptor. Lefkowitz RJ, Sun JP, Shukla AK. Nature Biotechnology. 2008 Feb;26(2):189-91.
14. A crystal clear view of the beta2-adrenergic receptor. Lefkowitz RJ, Sun JP, Shukla AK. Nature Biotechnology. 2008 Feb;26(2):189-91.
13. Crystallizing thinking about the beta2-adrenergic receptor. Shukla AK, Sun JP, Lefkowitz RJ. Molecular Pharmacology. 2008 May;73(5):1333-8.
13. Crystallizing thinking about the beta2-adrenergic receptor. Shukla AK, Sun JP, Lefkowitz RJ. Molecular Pharmacology. 2008 May;73(5):1333-8.
12. The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Lopez JJ, Shukla AK, Reinhart C, Schwalbe H, Michel H, Glaubitz C. Angew Chem Int Ed Engl. 2008;47(9):1668-71.
12. The structure of the neuropeptide bradykinin bound to the human G-protein coupled receptor bradykinin B2 as determined by solid-state NMR spectroscopy. Lopez JJ, Shukla AK, Reinhart C, Schwalbe H, Michel H, Glaubitz C. Angew Chem Int Ed Engl. 2008;47(9):1668-71.
** COVER PAGE ARTICLE **
** COVER PAGE ARTICLE **
11. Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors. Roy A, Shukla AK, Haase W, Michel H. Biological Chemistry. 2008 Jan;389(1):69-78.
11. Employing Rhodobacter sphaeroides to functionally express and purify human G protein-coupled receptors. Roy A, Shukla AK, Haase W, Michel H. Biological Chemistry. 2008 Jan;389(1):69-78.
2007
2007
10. Heterologous expression and characterization of the recombinant bradykinin B2 receptor using the methylotrophic yeast Pichia pastoris. Shukla AK, Haase W, Reinhart C, Michel H. Protein Expression and Purification. 2007 Sep;55(1):1-8.
10. Heterologous expression and characterization of the recombinant bradykinin B2 receptor using the methylotrophic yeast Pichia pastoris. Shukla AK, Haase W, Reinhart C, Michel H. Protein Expression and Purification. 2007 Sep;55(1):1-8.
09. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. Shenoy SK, Barak LS, Xiao K, Ahn S, Berthouze M, Shukla AK, Luttrell LM, Lefkowitz RJ. Journal of Biological Chemistry. 2007 Oct 5;282(40):29549-62.
09. Ubiquitination of beta-arrestin links seven-transmembrane receptor endocytosis and ERK activation. Shenoy SK, Barak LS, Xiao K, Ahn S, Berthouze M, Shukla AK, Luttrell LM, Lefkowitz RJ. Journal of Biological Chemistry. 2007 Oct 5;282(40):29549-62.
08. Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2007 Jul 17;104(29):12011-6.
08. Functional specialization of beta-arrestin interactions revealed by proteomic analysis. Xiao K, McClatchy DB, Shukla AK, Zhao Y, Chen M, Shenoy SK, Yates JR 3rd, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2007 Jul 17;104(29):12011-6.
07. Heterologous expression and comparative characterization of the human neuromedin U subtype II receptor using the methylotrophic yeast Pichia pastoris and mammalian cells. Shukla AK, Haase W, Reinhart C, Michel H. International Journal of Biochemistry and Cell Biology. 2007;39(5):931-42.
07. Heterologous expression and comparative characterization of the human neuromedin U subtype II receptor using the methylotrophic yeast Pichia pastoris and mammalian cells. Shukla AK, Haase W, Reinhart C, Michel H. International Journal of Biochemistry and Cell Biology. 2007;39(5):931-42.
2006
2006
06. Comparative analysis of the human angiotensin II type 1a receptor heterologously produced in insect cells and mammalian cells. Shukla AK, Reinhart C, Michel H. Biochemical Biophysical Research Communications. 2006 Oct 13;349(1):6-14.
06. Comparative analysis of the human angiotensin II type 1a receptor heterologously produced in insect cells and mammalian cells. Shukla AK, Reinhart C, Michel H. Biochemical Biophysical Research Communications. 2006 Oct 13;349(1):6-14.
05. Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells. Shukla AK, Reinhart C, Michel H. FEBS Letters. 2006 Jul 24;580(17):4261-5.
05. Dimethylsulphoxide as a tool to increase functional expression of heterologously produced GPCRs in mammalian cells. Shukla AK, Reinhart C, Michel H. FEBS Letters. 2006 Jul 24;580(17):4261-5.
04. Biochemical and pharmacological characterization of the human bradykinin subtype 2 receptor produced in mammalian cells using the Semliki Forest virus system. Shukla AK, Haase W, Reinhart C, Michel H. Biological Chemistry. 2006 May;387(5):569-76.
04. Biochemical and pharmacological characterization of the human bradykinin subtype 2 receptor produced in mammalian cells using the Semliki Forest virus system. Shukla AK, Haase W, Reinhart C, Michel H. Biological Chemistry. 2006 May;387(5):569-76.
03. Functional overexpression and characterization of human bradykinin subtype 2 receptor in insect cells using the baculovirus system. Shukla AK, Haase W, Reinhart C, Michel H. Journal of Cellular Biochemistry. 2006 Oct 15;99(3):868-77.
03. Functional overexpression and characterization of human bradykinin subtype 2 receptor in insect cells using the baculovirus system. Shukla AK, Haase W, Reinhart C, Michel H. Journal of Cellular Biochemistry. 2006 Oct 15;99(3):868-77.
02. Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA. Shukla AK, Roy KB. Biological Chemistry. 2006 Mar;387(3):251-6.
02. Rec A-independent homologous recombination induced by a putative fold-back tetraplex DNA. Shukla AK, Roy KB. Biological Chemistry. 2006 Mar;387(3):251-6.
01. A palindromic repeat sequence adopts a stable fold back structure under supercoiling. Shukla AK, Roy KB. Journal of Biochemistry. 2006 Jan;139(1):35-9.
01. A palindromic repeat sequence adopts a stable fold back structure under supercoiling. Shukla AK, Roy KB. Journal of Biochemistry. 2006 Jan;139(1):35-9.