98. A genetically-encoded nanobody sensor reveals conformational diversity in β-arrestins orchestrated by distinct seven transmembrane receptors. Sarma P#, Marková VN#, Dalal A, Mishra S, Zaidi N, Tiwari D, Yadav MK, Roy N, Mahajan G, Miclea M, Lazar J* and Shukla AK*. PNAS, 2025, Sep 16;122(37):e2507384122.
97. Structural visualization of small molecule recognition by CXCR3 uncovers dual-agonism in the CXCR3-CXCR7 system. Saha S#, Sano FK#, Sharma S#, Ganguly M, Dalal A, Mishra S, Tiwari D, Akasaka H, Kobayashi TA, Roy N, Zaidi N, Itoh Y, Leurs R, Banerjee R*, Shihoya W*, Nureki O* and Shukla AK*. Nature Communications, 2025, Mar 28:16(1):3047.
96. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Saha S#, Sano FK#, Sharma S#, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigne A, Banerjee R*, Shihoya W*, Nureki O* and Shukla AK*. Molecular Cell, 2025, Feb 11:S1097-2765(25)00058-9.
95. Bound by the love for cholesterol: A transporter meets a GPCR. Tiwari D, Roy N and Shukla AK*. Cell, 2024, Nov 14;187(23):6518-6520.
94. An orphan to the rescue of obesity and steatotic liver? Jain S* and Shukla AK*. Trends in Endocrinology and Metabolism, 2024, Sep;35(9):761-762.
93. Molecular mechanism of distinct chemokine engagement and functional divergence of the human Duffy antigen receptor. Saha S#, Khanppnavar B#, Maharana J#, Kim J, Carino CMC, Daly C, Houston S, Sharma S, Zaidi N, Dalal A, Mishra S, Ganguly M, Tiwari D, Kumari P, Jhingan GD, Yadav PN, Plouffe B, Inoue A, Chung KY, Banerjee R*, Korkhov VM* and Shukla AK*. Cell, 2024, Aug 22;187(17):4751-4769.
92. Structure-guided engineering of biased-agonism in the human niacin receptor via single amino acid substitution. Yadav M#, Sarma P#, Maharana J, Ganguly M, Mishra S, Zaidi N, Dalal A, Singh V, Saha S, Mahajan G, Sharma S, Chami M, Banerjee R* and Shukla AK*. Nature Communications, 2024 Mar 2;15(1):1939.
91. Molecular insights into atypical modes of β-arrestin interaction with seven transmembrane receptors. Maharana J#, Sano F#, Sarma P#, Yadav M, Longhan D, Stepniewski TM, Chaturvedi M, Ranjan A, Singh V, Saha S, Mahajan G, Chami M, Shihoya W, Selent J, Chung KY, Banerjee R*, Nureki O* and Shukla AK*. Science, 2024 Jan 5;383(6678):101-108.
90. Molecular basis of anaphylatoxin recognition, activation, and signaling-bias at complement receptors. Yadav MK#, Maharana J#, Yadav R#, Saha S#, Sarma P#, Soni S, Singh V, Saha S, Ganguly M, Li XX, Mahapatra S, Mishra S, Khant HA, Chami M, Woodruff TM, Banerjee R*, Shukla AK* and Gati C*. Cell, 2023, Oct 26;186(22):4956-4973.e21.
89. Molecular insights into intrinsic transducer-coupling bias in the CXCR4-CXCR7 system. Sarma P, Carino CMC, Seetharama D, Pandey S, Dwivedi-Agnihotri H, Rui X, Cao Y, Kawakami K, Kumari P, Chen Y-C, Luker KE, Yadav PN, Luker GD, Laporte SA, Chen X, Inoue A and Shukla AK* Nature Communications, 2023, Aug 9;14(1):4808.
88. A key GPCR phosphorylation motif discovered in arrestin2•CCR5 phosphopeptide complexes. Isaikina P, Petrovic I, Jakob RP, Sarma P, Ranjan A, Baruah M, Panwalkar V, Maier T, Shukla AK* and Grzesiek S*. Molecular Cell, 2023 Jun 15;83(12):2108-2121.e7.
87. Structural snapshots uncover a key phosphorylation motif in GPCRs driving β-arrestin activation. Maharana J#, Sarma P#, Yadav MK, Saha S, Singh V, Saha S, Chami M, Banerjee R* and Shukla AK*. Molecular Cell, 2023 Jun 15;83(12):2091-2107.e7.
86. Plasma membrane preassociation drives beta-arrestin coupling to receptors and activation. Grimes J, Koszegi Z, Lanoiselée Y, Miljus T, O’Brien SL, Stepniewski TM, Medel-Lacruz B, Baidya M, Makarova M, Mistry R, Goulding J, Drube J, Hoffmann C, Owen DM, Shukla AK, Selent J, Hill SJ and Calebiro D. Cell, 2023 May 11;186(10):2238-2255.e20.
85. Structural snapshot of a β-arrestin-biased receptor. Sarma P, Banerjee R and Shukla AK*. Trends in Pharmacological Sciences, 2023, Jan;44(1):1-3.
84. A streamlined protocol for expression and purification of wild-type β-arrestins. Yadav MK, Singh V, Saha S and Shukla AK*. Methods in Enzymology, 2022 (in press).
83. Resonating with the signaling bias of CXCR7. Sarma P and Shukla AK*. Molecular Cell, 2022, Sep 15;82(18):3318-3320.
82. Allosteric modulation of GPCR-induced β-arrestin trafficking and signaling by a synthetic intrabody. Baidya M, Chaturvedi M, Dwivedi-Agnihotri H, Ranjan A, Devost D, Namkung Y, Stepniewski TM, Pandey S, Baruah M, Panigrahi B, Sarma P, Yadav MK, Maharana J, Banerjee R, Kawakami K, Inoue A, Selent J, Laporte SA, Hébert TE and Shukla AK*. Nature Communications, 2022, Aug 8;13(1):4634.
81. Emerging structural insights into GPCR-β-arrestin interaction and functional outcomes. Maharana J, Banerjee R, Yadav M, Sarma P and Shukla AK. Current opinion in Structural Biology, 2022, Jun 20;75:102406.
80. Making the switch: The role of Gq in driving GRK selectivity at GPCRs. Sarma P, Saha S and Shukla AK. Science Signaling, 2022, Mar 22;15(726):eabo4949.
79. IUPHAR community guidelines for GPCR ligand bias. Kolb P, Kenakin T, Alexander SPH, Bermudez M, Bohn LM, Breinholt CS, Bouvier M, Ehlert F, Hill SJ, Kostenis E, Martemyanov K, Neubig RR, Onaran HO, Rajagopal S, Roth BL, Selent J, Shukla AK, Sommer ME and Gloriam DE. British Journal of Pharmacology, 2022, Jul;179(14):3651-3674.
78. Scratching the itch with cryo-EM. Maharana J, Sarma P and Shukla AK. Nature Chemical Biology, 2022, Mar;18(3):242-243.
77. In-cellulo chemical cross-linking to visualize protein-protein interactions. Saha S, Ranjan A, Godara M and Shukla AK. Methods in Cell Biology, 2022;169:295-307.
76. An Intrabody sensor to monitor conformational activation of β-arrestins. Dwivedi-Agnihotri H, Sarma P, Deeksha S, Kawakami K, Inoue A and Shukla AK. Methods in Cell Biology, 2022;169:267-278.
75. Biphasic activation of β-arrestin 1 upon interaction with a GPCR revealed by methyl-TROSY NMR. Shiraishi Y, Kofuku Y, Ueda T, Pandey S, Dwivedi-Agnihotri H, Shukla AK and Shimada I. Nature Communications, 2021, Dec 9;12(1):7158.
74. Intrinsic bias at non-canonical, β-arrestin-coupled seven transmembrane receptors. Pandey S, Kumari P, Baidya M, Kise R, Cao Y, Dwivedi-Agnihotri H, Banerjee R, Li XX, Cui CS, Lee JD, Kawakami K, Maharana J, Ranjan A, Chaturvedi M, Jhingan JD, Laporte SA, Woodruff TM, Inoue A and Shukla AK. Molecular Cell, 2021, Nov 18;81(22):4605-4621.e11.
** Highlighted by Science Signaling **
** Highlighted by Molecular Cell with Meet the Authors Feature **
73. Structural insights into ligand recognition and activation of angiotensin receptors. Zhang H, Luginina A, Mishin A, Baidya M, Shukla AK and Cherezov V. Trends in Pharmacological Sciences, 2021, May 10:S0165-6147(21)00076-6.
72. Feeling at home: Structure of the NTSR1-Gi complex in lipid environment. Maharana J and Shukla AK. Nature Structural and Molecular Biology, 2021, Apr;28(4):331-333.
71. Biased ligands at opioid receptors: Current status and future directions. Che T, Dwivedi-Agnihotri H, Shukla AK and Roth BL. Science Signaling, 2021, Apr 6;14(677):eaav0320.
70. The complement C5a-C5aR1 GPCR axis in COVID19 therapeutics. Woodruff TW and Shukla AK*. Trends in Immunology, 2020 Sep 23:S1471-4906(20)30229-5.
69. Transmitting the signal: Structure of the β1-adrenergic receptor-Gs protein complex. Pandey S, Saha S and Shukla AK*. Molecular Cell, 2020, Oct 1;80(1):3-5.
68. Distinct phosphorylation sites in a prototypical GPCR differently orchestrate β-arrestin interaction, trafficking and signaling. Dwivedi-Agnihotri H, Chaturvedi M, Baidya M, Stepniewski TM, Pandey S, Maharana J, Srivastava A, Caengprasath N, Hanyaloglu A, Selent J and Shukla AK. Science Advances, 2020, Sep 11, Vol. 6, no. 37, eabb8368.
67. Key phosphorylation sites in GPCRs orchestrate the contribution of β-Arrestin 1 in ERK1/2 activation. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Chaturvedi M, Stepniewski TM, Kawakami K, Cao Y, Laporte SA, Selent J, Inoue A and Shukla AK. EMBO Reports, 2020 Jul 26:e49886. doi: 10.15252/embr.201949886.
** Highlighted in a News and Views article by Prof. Richard Premont published in EMBO Reports **
66. Crystal structure of β-arrestin 2 in complex with CXCR7 phosphopeptide. Min K, Yoon HJ, Park JY, Baidya M, Dwivedi-Agnihotri H, Maharana J, Chaturvedi M, Chung KY, Shukla AK and Lee HH. Structure, 2020 Jun 19:S0969-2126(20)30205-7.
65. Genetically encoded intrabody sensors report the interaction and trafficking of β-arrestin 1 upon activation of G protein–coupled receptors. Baidya M, Kumari P, Dwivedi-Agnihotri H, Pandey S, Sokrat B, Sposini S, Chaturvedi M, Srivastava A, Roy D, Hanyaloglu AH, Bouvier M and Shukla AK. Journal of Biological Chemistry, 2020 May 21:jbc.RA120.013470. doi: 10.1074/jbc.RA120.013470.
** Amongst top 50 most viewed papers in the journal during May-June 2020 **
** Selected as the Paper of the Year in Signal-transduction category by the journal for 2020 **
64. Emerging insights into the structure and function of complement C5a receptors. Pandey S, Maharana J, Li XX, Woodruff TM and Shukla AK. Trends in Biochemical Sciences, 2020 May 10:S0968-0004(20)30107-9. doi: 10.1016/j.tibs.2020.04.004.
63. Calcium as a biased cofactor. Chaturvedi M and Shukla AK. Science, 2020 April 24;368(6489):369-370.
62. Molecular basis of β-arrestin coupling to formoterol-bound β1-adrenoceptor. Lee Y, Warne T, Nehmé R, Pandey S, Dwivedi-Agnihotri H, Chaturvedi M, Edwards PC, García-Nafría J, Leslie AGW, Shukla AK and Tate CG. Nature, 2020 Jul;583(7818):862-866.
** Highlighted in a Spotlight article by Prof. Jeffrey Benovic published in Trends in Pharmacological Sciences **
** Highlighted by Prof. Patrick Sexton in F1000 prime **
61. Terminating G-Protein Coupling: Structural Snapshots of GPCR-β-Arrestin Complexes. Chaturvedi M, Maharana J and Shukla AK. Cell, 2020 Mar 19;180(6):1041-1043.
60. Purification of native CCL7 and its functional interaction with selected chemokine receptors. Goncharuk MV, Roy D, Dubinnyi MA, Nadezhdin KD, Srivastava A, Baidya M, Agnihotri-Dwivedi H, Arseniev AS and Shukla AK. Protein Expression and Purification, 2020 Jul;171:105617. doi: 10.1016/j.pep.2020.105617.
59. Structure and function of β-arrestins, their emerging role in breast cancer, and potential opportunities for therapeutic manipulation. Shukla AK and Dwivedi-Agnihotri H. Advances in Cancer Research, 2020;145:139-156.
58. Site-directed labeling of β-arrestins with monobromobimane for measuring their interaction with G protein-coupled receptors. Srivastava A, Baidya M, Agnihotri-Dwivedi H and Shukla AK. Methods in Enzymology, 2020, 633:271-280.
57. Reversible biotinylation of purified proteins for measuring protein-protein interaction. Agnihotri-Dwivedi H, Srivastava A and Shukla AK. Methods in Enzymology, 2020, 633:281-294.
56. The inside story: Crystal structure of the chemokine receptor CCR7 with an intracellular allosteric antagonist. Saha S and Shukla AK. Biochemistry, 2020, Jan 14;59(1):12-14.
55. Conformational sensors and domain-swapping reveal structural and functional differences between arrestin isoforms. Ghosh E, Dwivedi H, Baidya M, Srivastava A, Kumari P, Stepniewski T, Kim HY, Lee MH, Gastel JV, Chaturvedi M, Roy D, Pandey S, Maharana J, Ganzalez RY, Luttrell LM, Chung KY, Dutta S, Selent J and Shukla AK. Cell Reports, 2019, Vol 28, Issue 13, P3287-3299.
** Highlighted by Prof. Marta Filizola in F1000 prime **
54. The Gut Feeling: GPCRs enlighten the way. Pandey S, Maharana J and Shukla AK. Cell Host Microbe, 2019, Vol 26, Issue 2, P160-162.
53. Partial ligand-receptor engagement yields functional bias at the human complement receptor, C5aR1. Pandey S, Li XX, Srivastava A, Baidya M, Kumari P, Dwivedi H, Chaturvedi M, Ghosh E, Woodruff TM and Shukla AK. Journal of Biological Chemistry, 2019, Jun 14;294(24):9416-9429.
52. Measuring surface expression and endocytosis of GPCRs using whole-cell ELISA. Pandey S, Roy D and Shukla AK. Methods in Cell Biology, 2019;149:131-140.
51. Measuring agonist-induced ERK MAP kinase phosphorylation for G protein-coupled receptors. Kumari P, Dwivedi H, Baidya M and Shukla AK. Methods in Cell Biology, 2019,149:141-153.
50. Structural basis of partial-agonism at the beta2-adrenergic receptor. Shula AK. Biochemistry, 2019, Jan 22;58(3):137-139.
49. Entering the pocket: Crystal structure of a prostaglandin D2 receptor. Baidya M, Kumari P and Shukla AK. Molecular Cell, 2018, Oct 4;72(1):3-6.
48. Illuminating GPCR signaling by cryo-EM. Safdari AH, Pandey S, Shukla AK and Dutta S. Trends in Cell Biology, 2018, Aug;28(8):591-594.
47. Molecular mechanism of modulating arrestin conformation by GPCR phosphorylation. Sente A, Peer R, Srivastava A, Baidya M, Lesk A, Santhanam B, Shukla AK, Babu MM and Flock T. Nature Structure & Molecular Biology, 2018, June; 25(6):538-545.
** Accompanied by a News & Views article by Prof. Arthur Christopoulos in the same issue **
** Highlighted by Prof. Bryan L. Roth in F1000 prime **
46. Emerging paradigm of intracellular targeting of GPCRs. Chaturvedi M, Schilling J, Beautrait A, Bouvier M, Benovic JL and Shukla AK. Trends in Biochemical Sciences, 2018, Jul;43(7):533-546.
45. GPCR signaling: The interplay of Gαi and β-arrestin. Dwivedi H, Baidya M and Shukla AK. Current Biology, 2018, Apr 2;28(7):R324-327.
44. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. Ghosh E, Srivastava A, Baidya M, Kumari P, Dwivedi H, Nidhi K, Ranjan R, Dogra S, Koide A, Yadav PN, Sidhu SS, Koide S, and Shukla AK. Nature Nanotechnology, 2017, Dec:12(12):1190-1198.
43. Novel insights into GPCR-b-arrestin interaction and signaling. Ranjan R, Dwivedi H, Baidya M, Kumar M and Shukla AK. Trends in Cell Biology, 2017, Nov;27(11):851-862.
42. Frozen in action: cryo-EM structure of a GPCR-G-protein complex. Baidya M, Dwivedi H and Shukla AK. Nature Structure & Molecular Biology, 2017 Jun 6;24(6):500-502.
41. Distinct conformations of GPCR-β-arrestin complexes mediate desensitization, signaling, and endocytosis. Cahill TJ 3rd, Thomsen AR, Tarrasch JT, Plouffe B, Nguyen AH, Yang F, Huang LY, Kahsai AW, Bassoni DL, Gavino BJ, Lamerdin JE, Triest S, Shukla AK, Berger B, Little J 4th, Antar A, Blanc A, Qu CX, Chen X, Kawakami K, Inoue A, Aoki J, Steyaert J, Sun JP, Bouvier M, Skiniotis G, Lefkowitz RJ. Proceedings of the National academy of sciences, U S A. 2017 Mar 7;114(10):2562-2567.
37. GPCR-G Protein-β-Arrestin Super-Complex Mediates Sustained G Protein Signaling. Thomsen ARB, Plouffe B, Cahill TJ, Shukla AK, Tarrasch JT, Dosey AM, Kahsai AW, Strachan RT, Pani B, Mahoney JP, Huang L, Breton B, Sunahara RK, Skiniotis G, Bouvier M and Lefkowitz RJ. Cell. 2016 Aug 11;166(4):907-19.
** Highlighted in Trends in Biochemical Sciences with a Spotlight piece by Dr. Fiona Marshall **
28. Visualization of arrestin recruitment by a G-protein-coupled receptor. Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Tripathi-Shukla P, Qian J, Li S, Blanc A, Oleskie AN, Dosey AM, Su M, Liang CR, Gu LL, Shan JM, Chen X, Hanna R, Choi M, Yao XJ, Klink BU, Kahsai AW, Sidhu SS, Koide S, Penczek PA, Kossiakoff AA, Woods Jr VL, Kobilka BK, Skiniotis G, Lefkowitz RJ. Nature. 2014 Aug 14;512(7513):218-22.
26. Discovery of β2 Adrenergic Receptor Ligands Using Biosensor Fragment Screening of Tagged Wild-Type Receptor. Aristotelous T, Ahn S, Shukla AK, Gawron S, Sassano MF, Kahsai AW, Wingler LM, Zhu X, Tripathi-Shukla P, Huang XP, Riley J, Besnard J, Read KD, Roth BL, Gilbert IH, Hopkins AL, Lefkowitz RJ, Navratilova I. ACS Medicinal Chemistry Letters. 2013 Oct 10;4(10):1005-1010.
25. Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Shukla AK, Manglik A, Kruse AC, Xiao K, Reis RI, Tseng WC, Staus DP, Hilger D, Uysal S, Huang LY, Paduch M, Tripathi-Shukla P, Koide A, Koide S, Weis WI, Kossiakoff AA, Kobilka BK, Lefkowitz RJ. Nature. 2013 May 2;497(7447):137-41.
23. Global phosphorylation analysis of beta-arrestin-mediated signaling downstream of a seven transmembrane receptor (7TMR). Xiao K, Sun J, Kim J, Rajagopal S, Zhai B, Villén J, Haas W, Kovacs JJ, Shukla AK, Hara MR, Hernandez M, Lachmann A, Zhao S, Lin Y, Cheng Y, Mizuno K, Ma'ayan A, Gygi SP, Lefkowitz RJ. Proceedings of the National Academy of Sciences, U S A. 2010 Aug 24;107(34):15299-304.
** Selected as a Paper of the Week **