24. Quantum sensing in micro-architected scaffolds. Brian W. Blankenship, Yoonsoo Rho, Zachary R. Jones, Timon Meier, Runxuan Li, Emanuel Druga, Vasileios Korakis, Harpreet Singh, Xiaoxing Xia, Ashok Ajoy, and Costas P. Grigoropoulos. (ACS Applied Materials & Interfaces | 2025 | DOI: 10.1021/acsami.5c22109).
23. High sensitivity pressure and temperature quantum sensing in organic crystals. Harpreet Singh, Noella D’Souza, Joseph Garrett, Angad Singh, Brian Blankenship, Emanuel Druga, Riccardo Montis, Liang Tan, and Ashok Ajoy. (Nature Communications | 2025 | Vol. 16:10530).
22. Optically detected magnetic resonance imaging and sensing within functionalized additively manufactured microporous structures. Brian W. Blankenship, Yoonsoo Rho, Zachary Jones, Timon Meier, Runxuan Li, Emanuel Druga, Harpreet Singh, Xiaoxing Xia, Ashok Ajoy, and Costas P. Grigoropoulos. (arXiv | 2025 | arXiv:2502.16434).
21. Spatially resolved quantum sensing with high-density bubble-printed nanodiamonds. Brian Blankenship, Jingang Li, Zachary Jones, Madhur Parashar, Naichen Zhao, Harpreet Singh, Runxuan Li, Arvin Sophia, Adrisha Sarkar, Rundi Yang, Timon Meier, Yoonsoo Rho, Ashok Ajoy, and Costas P. Grigoropoulos. (Nano Letters | 2024 | 24:9711–9719).
20. Room-temperature quantum sensing with photoexcited triplet electrons in organic crystals. Harpreet Singh, Noella D’Souza, Keyuan Zhong, Emanuel Druga, Julianne Oshiro, Brian Blankenship, Jeffrey A. Reimer, Jonathan D. Breeze, and Ashok Ajoy. (Physical Review Research | 2025 | 7:013192).
19. Zero-field ODMR and relaxation of Si-vacancy centers in 6H-SiC. Harpreet Singh, Andrey N. Anisimov, Pavel G. Baranov, and Dieter Suter. (Materials Research Express | 2023 | Vol. 10, No. 11).
18. Complex 3-dimensional microscale structures for quantum sensing applications. Brian W. Blankenship, Zachary Jones, Naichen Zhao, Harpreet Singh, Adrisha Sarkar, Runxuan Li, Erin Suh, Alan Chen, Costas Grigoropoulos, and Ashok Ajoy. (Nano Letters | 2023 | 23(20):9272–9279).
17. Molecular recognition of carbonate ion using a novel turn-on fluorescent probe. Hardeep Kaur, Riya, Amandeep Singh, Harpreet Singh, Uma Ranjan Lal, and M.V.N.L. Chaitanya. (Spectrochimica Acta Part A | 2023 | 123270).
16. Identification of different silicon vacancy centers in 6H-SiC. Harpreet Singh, Andrei N. Anisimov, Pavel G. Baranov, and Dieter Suter. (arXiv | 2023 | arXiv:2212.10256).
15. Characterization of single shallow silicon-vacancy centers in 4H-SiC. Harpreet Singh, Mario Alex Hollberg, Misagh Ghezellou, Jawad Ul-Hassan, Florian Kaiser, and Dieter Suter. (Physical Review B | 2023 | 107:134117).
14. Multi-photon multi-quantum transitions in the spin-3/2 silicon-vacancy centers of SiC. Harpreet Singh, Alex Mario Hollberg, Andrei N. Anisimov, Pavel G. Baranov, and Dieter Suter. (Physical Review Research | 2022 | 4:023022).
13. Inverted fine structure of a 6H-SiC qubit enabling robust spin-photon interface. I. D. Breev, Z. Shang, A. V. Poshakinskiy, Harpreet Singh, Y. Berencén, M. Hollenbach, S. S. Nagalyuk, E. N. Mokhov, R. A. Babunts, P. G. Baranov, D. Suter, S. A. Tarasenko, G. V. Astakhov, and A. N. Anisimov. (npj Quantum Information | 2022 | 8:23).
12. Relaxation processes and high-field coherent spin manipulation in color center ensembles in 6H-SiC. Victor A. Soltamov, Boris V. Yavkin, Andrey N. Anisimov, Harpreet Singh, Anna P. Bundakova, Georgy V. Mamin, Sergei B. Orlinskii, Evgeniy N. Mokhov, Dieter Suter, and Pavel G. Baranov. (Physical Review B | 2021 | 103:195201).
11. Optical spin initialization of spin-3/2 silicon vacancy centers in 6H-SiC at room temperature. Harpreet Singh, Andrei N. Anisimov, Pavel G. Baranov, and Dieter Suter. (Physical Review B | 2021 | 103:104103).
10. Using a Lindbladian approach to model decoherence in two coupled nuclear spins via correlated phase-damping and amplitude damping noise channels. Harpreet Singh, Arvind, and Kavita Dorai. (Pramana – Journal of Physics | 2020 | 94:160).
9. Experimental characterization of spin-3/2 silicon-vacancy centers in 6H-SiC. Harpreet Singh, Andrei N. Anisimov, Sergei S. Nagalyuk, Eugenii N. Mokhov, Pavel G. Baranov, and Dieter Suter. (Physical Review B | 2020 | 101:134110).
8. Experimental classification of tripartite entanglement without prior information on an NMR quantum information processor. Amandeep Singh, Harpreet Singh, Arvind, and Kavita Dorai. (Physical Review A | 2018 | 98:032301).
7. Efficient experimental design of high-fidelity three-qubit quantum gates via genetic programming. Amit Devra, Prithviraj Prabhu, Harpreet Singh, Arvind, and Kavita Dorai. (Quantum Information Processing | 2018 | 17:67).
6. Evolution of tripartite entangled states in a decohering environment and their experimental protection using dynamical decoupling. Harpreet Singh, Arvind, and Kavita Dorai. (Physical Review A | 2018 | 97:022302).
5. Experimentally freezing quantum discord in a dissipative environment using dynamical decoupling. Harpreet Singh, Arvind, and Kavita Dorai. (Europhysics Letters (EPL) | 2017 | 118:50001).
4. Fast profiling of metabolite mixtures using chemometric analysis of a speeded-up 2D heteronuclear correlation NMR experiment. Rakesh Sharma, Navdeep Gogna, Harpreet Singh, and Kavita Dorai. (RSC Advances | 2017 | 7:29860).
3. Experimental protection of arbitrary states in a two-qubit subspace by nested Uhrig dynamical decoupling. Harpreet Singh, Arvind, and Kavita Dorai. (Physical Review A | 2017 | 95:052337).
2. Constructing valid density matrices on an NMR quantum information processor via maximum likelihood estimation. Harpreet Singh, Arvind, and Kavita Dorai. (Physics Letters A | 2016 | 380:3051–3056).
1. Experimental protection against evolution of states in a subspace via a super-Zeno scheme on an NMR quantum information processor. Harpreet Singh, Arvind, and Kavita Dorai. (Physical Review A | 2014 | 90:052329).
Generation, estimation, and protection of novel quantum states of spin systems (2011-2017). arXiv:1804.11057.