Artículos de investigación:
1. Arocha, GL, Montejano, L, Morales, E (1996) A quick proof of Höbinger-Burton-Larman’s Theorem. Geom Dedicata 63: pp. 331-335.
2. V. Boltyanski, E. Morales Amaya, Minimal fixing systems for convex bodies, Journal of Applied Analysis 1, 1 (1995), pp. 1–11.
3. V. G. Boltyanski, E. Morales Amaya: Cardinalities of Primitive Fixing Systems for Convex Bodies. Discrete & Computational Geometry 24(2-3): 209-218 (2000).
4. L. Montejano and E. Morales, Characterizations of ellipsoids and polarity in convex bodies. Mathematika 50 (2003) 63-72.
5. J. Jeronimo-Castro, L. Montejano and E. Morales. Shaken Rogers theorem for homothetic sections. Canadian Mathematical Bulletin, ISSN 0008-4395, Vol. 52 (3), 2009, Pags. 403-406.
6. J. Jerónimo-Castro, L. Montejano, E. Morales-Amaya Only Solid Spheres Admit a False Axis of Revolution. Journal of Convex Analysis Volume 18 (2011) 505—511.
7. L. Montejano and E. Morales, Variations of classic characterizations of ellipsoid and a short proof of the false centre theorem, Mathematika 54 (2007), 37-42.
8. L. Montejano and E. Morales, Shaken False Centre Theorem I, Mathematika 54 (2007), 43-48.
9. D. Larman and E. Morales Amaya. On the false pole problem. Monatshefte für Mathematik 2007, Volume 151 (4), 271-286.
10. D. Larman, L. Montejano and E. Morales: `Characterization of Ellipsoids by Means of Parallel Translated Sections'. Mathematika (2010), 56: 363-378.
11. R. Abreu-Blaya, J. Bory-Reyes, E. Morales Amaya, J. M. Sigarreta Almira, Criteria for self-conjugateness of differential forms on bounded domains. Revista de la Unión Matemática Argentina Vol. 60 No. 1 (2019) Pags. 247-256.
12. Morales-Amaya, E., Jerónimo-Castro, J. and Verdusco Hernández, D. J.. "A characterization of centrally symmetric convex bodies in terms of visual cones" Advances in Geometry, vol. 22, no. 4, 2022, pp. 481-486.
https://doi.org/10.1515/advgeom-2022-0006
13. I. González-García, J. Jerónimo-Castro, E. Morales-Amaya, and D. J. Verdusco-Hernández. Sections and projections of nested convex bodies. Aequat Math. 96 (2022) 885-900.
https://doi.org/10.1007/s00010-022-00884-4
14. I. González-García, J. Jerónimo-Castro, E. Morales-Amaya, and D. J. Verdusco-Hernández. A characterization of the ellipsoid through planar grazes. Mathematika Vol. 69 no. 1 (2022), pp. 100-105.
https://doi.org/10.1112/mtk.12176
15. Jerónimo-Castro, J., Jimenez-Lopez, F.G. & Morales-Amaya, E. Some Results About Equichordal Convex Bodies. Discrete Comput Geom 70, 1741–1750 (2023). https://doi.org/10.1007/s00454-023-00543-8
16. González-García, I., Jerónimo-Castro, J., Jiménez-Desantiago, V., & Morales-Amaya, E. (2024). Convex Bodies with Equipotential Circles. The American Mathematical Monthly, 132(3), 251–260.
https://www.tandfonline.com/doi/full/10.1080/00029890.2024.2434439
17. Morales-Amaya, E., Mondragón, G. & Jerónimo-Castro, J. On characteristic properties of the ellipsoid in terms of circumscribed cones of a convex body. Bol. Soc. Mat. Mex. 31, 57 (2025).
https://doi.org/10.1007/s40590-025-00736-6
18. Jerónimo-Castro, J., Morales-Amaya, E. & Verdusco-Hernández, D.J. Characterizations of the Sphere by Means of Point-Projections. Discrete Comput Geom 73, 887–895 (2025).
https://doi.org/10.1007/s00454-024-00712-3
19. Alfonseca, M. Angeles, Cordier, M., Jerónimo-Castro, J. and Morales-Amaya, E.. "Characterization of the sphere and of bodies of revolution by means of Larman points" Advances in Geometry, vol. 24, no. 2, 2024, pp. 247-262
https://doi.org/10.1515/advgeom-2024-0007
20. Morales-Amaya, E. Convex bodies with pairs of sections associated by reflections. Beitr Algebra Geom (2025).
https://doi.org/10.1007/s13366-025-00806-w
21. Amaya, E.M. Characterization of the sphere by means of congruent support cones. J. Geom. 116, 37 (2025).
https://doi.org/10.1007/s00022-025-00776-3