Chapitre C1: Méthodes physiques d'analyse
Exploiter la loi de Beer-Lambert ou la loi de Kohlrausch pour déterminer une concentration ou une quantité de matière. Citer les domaines de validité de ces relations. Mesurer une conductance et tracer une courbe d’étalonnage pour déterminer une concentration.Chapitre C2 : Cinétique chimique
Justifier le choix d’un capteur de suivi temporel de l’évolution d’un système. Identifier, à partir de données expérimentales, des facteurs cinétiques. Citer les propriétés d’un catalyseur et identifier un catalyseur à partir de données expérimentales. Mettre en évidence des facteurs cinétiques et l’effet d’un catalyseur. À partir de données expérimentales, déterminer une vitesse volumique de disparition d’un réactif, une vitesse volumique d’apparition d’un produit ou un temps de demi-réaction. Mettre en œuvre une méthode physique pour suivre l’évolution d’une concentration et déterminer la vitesse volumique de formation d’un produit ou de disparition d’un réactif. Identifier, à partir de données expérimentales, si l’évolution d’une concentration suit ou non une loi de vitesse d’ordre 1. Capacité numérique : À l’aide d’un langage de programmation et à partir de données expérimentales, tracer l’évolution temporelle d’une concentration, d’une vitesse volumique d’apparition ou de disparition et tester une relation donnée entre la vitesse volumique de disparition et la concentration d’un réactif. Interpréter l’influence des concentrations et de la température sur la vitesse d’un acte élémentaire, en termes de fréquence et d’efficacité des chocs entre entités.Chapitre C3: transformations acide base
Identifier, à partir d’observations ou de données expérimentales, un transfert d’ion hydrogène, les couples acide-base mis en jeu et établir l’équation d’une réaction acide-base. Représenter le schéma de Lewis et la formule semi-développée d’un acide carboxylique, d’un ion carboxylate, d’une amine et d’un ion ammonium. Identifier le caractère amphotère d’une espèce chimique. Déterminer, à partir de la valeur de la concentration en ion oxonium H3O+, la valeur du pH de la solution et inversement. Mesurer le pH de solutions d’acide chlorhydrique (H3O+, Cl-) obtenues par dilutions successives d’un facteur 10 pour tester la relation entre le pH et la concentration en ion oxonium H3O+ apporté. Capacité mathématique : Utiliser la fonction logarithme décimal et sa réciproque.Chapitre C4: sens d'évolution spontanée
Relier le caractère non total d’une transformation à la présence, à l’état final du système, de tous les réactifs et de tous les produits. Mettre en évidence la présence de tous les réactifs dans l’état final d’un système siège d’une transformation non totale, par un nouvel ajout de réactifs. Déterminer le sens d’évolution spontanée d’un système. Déterminer un taux d’avancement final à partir de données sur la composition de l’état final et le relier au caractère total ou non total de la transformation. Déterminer la valeur du quotient de réaction à l’état final d’un système, siège d’une transformation non totale, et montrer son indépendance vis-à-vis de la composition initiale du système à une température donnée.Chapitre C5: force des acides et des bases
Associer KA et Ke aux équations de réactions correspondantes. Estimer la valeur de la constante d’acidité d’un couple acide-base à l’aide d’une mesure de pH. Associer le caractère fort d’un acide (d’une base) à la transformation quasi-totale de cet acide (cette base) avec l’eau. Prévoir la composition finale d’une solution aqueuse de concentration donnée en acide fort ou faible apporté. Comparer la force de différents acides ou de différentes bases dans l’eau. Mesurer le pH de solutions d’acide ou de base de concentration donnée pour en déduire le caractère fort ou faible de l’acide ou de la base. Capacité numérique : Déterminer, à l’aide d’un langage de programmation, le taux d’avancement final d’une transformation, modélisée par la réaction d’un acide sur l’eau. Capacité mathématique : Résoudre une équation du second degré. Citer des solutions aqueuses d’acides et de bases courantes et les formules des espèces dissoutes associées : acide chlorhydrique (H3O+(aq), Cl-(aq)), acide nitrique (H3O+(aq), NO3-(aq)), acide éthanoïque (CH3COOH(aq)), soude ou hydroxyde de sodium (Na+(aq), HO-(aq)), ammoniac (NH3(aq)). Représenter le diagramme de prédominance d’un couple acide-base. Exploiter un diagramme de prédominance ou de distribution. Justifier le choix d’un indicateur coloré lors d’un titrage. Capacité numérique : Tracer, à l’aide d’un langage de programmation, le diagramme de distribution des espèces d’un couple acide-base de pKA donné. Citer les propriétés d’une solution tampon.Chapitre C6: Méthodes chimiques d'analyse
Réaliser une solution de concentration donnée en soluté apporté à partir d’une solution de titre massique et de densité fournis. Établir la composition du système après ajout d’un volume de solution titrante, la transformation étant considérée comme totale. Exploiter un titrage pour déterminer une quantité de matière, une concentration ou une masse. Dans le cas d’un titrage avec suivi conductimétrique, justifier qualitativement l’évolution de la pente de la courbe à l’aide de données sur les conductivités ioniques molaires. Mettre en œuvre le suivi pH-métrique d’un titrage ayant pour support une réaction acide-base. Mettre en œuvre le suivi conductimétrique d’un titrage. Capacité numérique : Représenter, à l’aide d’un langage de programmation, l’évolution des quantités de matière des espèces en fonction du volume de solution titrante versé.Chapitre C7: piles et électrolyse
Justifier la stratégie de séparation des réactifs dans deux demi-piles et l’utilisation d’un pont salin. Modéliser et schématiser, à partir de résultats expérimentaux, le fonctionnement d’une pile. Déterminer la capacité électrique d’une pile à partir de sa constitution initiale. Réaliser une pile, déterminer sa tension à vide et la polarité des électrodes, identifier la transformation mise en jeu, illustrer le rôle du pont salin.Chapitre C8: synthèse organique
Exploiter des règles de nomenclature fournies pour nommer une espèce chimique ou représenter l’entité associée. Représenter des formules topologiques d’isomères de constitution, à partir d’une formule brute ou semi-développée. Identifier le motif d’un polymère à partir de sa formule. Citer des polymères naturels et synthétiques et des utilisations courantes des polymères. Identifier, dans un protocole, les opérations réalisées pour optimiser la vitesse de formation d’un produit. Justifier l’augmentation du rendement d’une synthèse par introduction d’un excès d’un réactif ou par élimination d’un produit du milieu réactionnel. Mettre en œuvre un protocole de synthèse pour étudier l’influence de la modification des conditions expérimentales sur le rendement ou la vitesse. Élaborer une séquence réactionnelle de synthèse d’une espèce à partir d’une banque de réactions. Identifier des réactions d’oxydo-réduction, acide-base, de substitution, d’addition, d’élimination. Identifier des étapes de protection / déprotection et justifier leur intérêt, à partir d’une banque de réactions.