El límite de la función f(x) en el punto x0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x0. Es decir el valor al que tienden las imágenes cuando los originales tienden a x0.
Vamos a estudiar el límite de la función f(x) = x2 en el punto x0 = 2.
Tanto si nos acercamos a 2 por la izquierda o la derecha las imágenes se acercan a 4.
Se dice que la función f(x) tiene como límite el número L , cuando x tiende a x0, si fijado un número real positivo ε , mayor que cero, existe un numero positivo δ dependiente de ε, tal que, para todos los valores de x distintos de x0 que cumplen la condición|x − x0| < δ , se cumple que |f(x) − L| < ε.
También podemos definir el concepto de límite a través de entornos:
si y sólo si, para cualquier entorno de L que tomemos, por pequeño que sea su radio ε, existe un entorno de x0, Eδ(x0), cuyos elementos (sin contar x0), tienen sus imágenes dentro del entorno de L, Eε(L).
Una función f(x) tiene por límite +∞ cuando x → a, si fijado un número real positivo K > 0 se verifica que f(x) > k para todos los valores próximos a a.
Ejemplo
Una función f(x) tiene por límite -∞ cuando x a, si fijado un número real negativo K < 0 se verifica que f(x) < k para todos los valores próximos a a.
Ejemplo
g puede ser una raíz, un log, sen ,cos, tg, etc.
Operaciones con infinito
Debemos señalar que estas indicaciones no son operaciones propiamente dichas, sino simplemente un recurso para ayudarnos a resolver límites.
Debemos tener claro que infinito no es un número.
No distinguimos entre +∞ y -∞ para no alargar excesivamente la lista. Nos basta con saber:
La regla de los signos y que a-n = 1/a n
Infinito más un número
Infinito más infinito
Infinito menos infinito
Infinito por un número
Infinito por infinito
Infinito por cero
Cero partido por un número
Un número partido por cero
Un número partido por infinito
Infinito partido por un número
Cero partido por infinito
Infinito partido por cero
Cero partido por cero
Infinito partido por infinito
Un número elevado a cero
Cero elevado a cero
Infinito elevado a cero
Cero elevado a un número
Un número elevado a infinito
Cero elevado a infinito
Infinito elevado a infinito
Uno elevado a infinito
Si f(x) es una función usual (polinómicas, racionales, radicales, exponenciales, logarítmicas, etc.) y está definida en el punto a, entonces se suele cumplir que:
Es decir: para calcular el límite se sustituye en la función el valor al que tienden las x.
No podemos calcular porque el dominio de definición está en el intervalo [0, ∞), por tanto no puede tomar valores que se acerquen a −2.
Sin embargo sí podemos calcular , porque aunque 3 no pertenezca al dominio, D= − {2, 3}, sí podemos tomar valores del dominio tan próximos a 3 como queramos.
En primer lugar tenemos que estudiar los límites laterales en los puntos de unión de los diferentes trozos.
Si coinciden, este es el valor del límite.
Si no coinciden, el límite no existe.
.
En x = −1, los límites laterales son:
Por la izquierda:
Por la derecha:
Como en ambos casos coinciden, el límite existe y vale 1.
En x = 1, los límites laterales son:
Por la izquierda:
Por la derecha:
Como no coinciden los límites laterales no tiene límite en x = 1.
Nota: Infinito no es un número, las operaciones que realizamos con ∞ son simplemente un recurso para ayudarnos a resolver límites.
1Aplicando la definición de límite, probar que:
2Observa la gráfica de esta función f(x) y calcular estos límites.
Calcular los siguientes límites
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18Calcular:
1
2
3
4
5
6
7
8