Divesh Aggarwal                             
      Senior Researcher                                                                     
    School of Computer and Communication Sciences                                              
    EPFL                                                                                          
                                                                                                         
                                                                                                                     
                                                                                                        
                                                                                                                    

I am a senior researcher in the School of Computer and Communication Sciences at EPFL. Before this, I spent two years as a postdoctoral researcher at the Department of Computer Science at New York University from September 2012 to August 2014. I completed my PhD under the guidance of Prof. Ueli Maurer at ETH Zurich in February, 2012. 

I will be joining as an Assistant Professor in the Department of Computer Science at NUS, and a Principal Investigaror at CQT in Fall, 2016. 


Contact Information:
   Address: INF 230 (Bâtiment INF), Station 14                            
                  CH-1015, Lausanne, Switzerland
   Phone:    +41-21-693-8107 (office)
                  +41-78-825-4097 (mobile)
   Email:      divesh.aggarwal@epfl.ch
                   divesh.aggarwal@gmail.com

Research Interests:
Broadly speaking, I am interested in discrete structures and their applications in theoretical computer science. In particular, I am interested in the following:
  •  Information-theoretic Cryptography
  •  Randomness Extractors and Applications
  •  Lattices in Computer Science
  •  Coding Theory
  •  Computational number theory

Publications:
  • A note on discrete Gaussian combinations of lattice vectors [link]
    Divesh Aggarwal and Oded Regev.  
    In submission

  • Improved hardness results for unique shortest vector problem [link]
    Divesh Aggarwal and Chandan Dubey.
     
    In submission.
  • Revisiting the Sanders-Bogolyubov-Ruzsa Theorem in F_p^n and its Application to Non-malleable Codes [link]
    Divesh Aggarwal and Jop Briët.
    ISIT 2016.
  • Affine-malleable extractors, spectrum doubling, and application to privacy amplification [link]
    Divesh Aggarwal, Kaave Hosseini, and Shachar Lovett.
    ISIT 2016. 
  • A Note on lower bounds for non-interactive message authentication using weak keys [link]
    Divesh Aggarwal and Alexander Golovnev.
    ITW 2015. 
  • Affine-evasive sets modulo a prime [link]
    Divesh Aggarwal.
    Information Processing Letters 2015.
  • The leakage-resilience limit of a computational problem is equal to its unpredictability entropy [link]
    Divesh Aggarwal and Ueli Maurer.
     
    ASIACRYPT 2011. 
  • The equivalence of strong RSA and factoring in the generic ring model of computation [link]
    Divesh Aggarwal, Ueli Maurer, and Igor Shparlinski
    WCC 2011. 
  • Breaking RSA generically is equivalent to factoring  [link]
    Divesh Aggarwal and Ueli Maurer.
    EUROCRYPT 2009.

Teaching experience:
I have been a teaching assistant or recitation instructor for the following courses:
  • Cryptography                                         Fall 2008                 ETH Zurich
  • Information Security                               Spring 2008-2011    ETH Zurich
  • Algorithms, Probability and Computing     Fall 2011                 ETH Zurich
  • Fundamental Algorithms                         Fall 2012-2013         NYU

Professional Activities:
Program Committee: TCC 2016-B, SCN 2016, ICITS 2016
Organizing Committee: TCC 2010
Reviewed several papers for: STOC, FOCS, SODA, CCC, ICALP, Crypto, Eurocrypt, FSTTCS, ISAAC, TCC, Asiacrypt, Africacrypt, PKC, CT-RSA, SCN, Discrete Mathematics, Theoretical Computer Science, Journal of Cryptology, Designs Codes and Cryptography, IEEE Transactions of Information Theory


shopify analytics tool