¿Qué es el Cálculo diferencial?
El cálculo diferencial es una parte importante del análisis matemático y dentro del mismo del cálculo. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función.
Cuando surgen cuestiones concernientes a la razón entre dos cantidades variables, entramos en los dominios del Cálculo Diferencial. Son por tanto objeto de estudio del cálculo diferencial temas como la velocidad (razón entre la distancia recorrida y el tiempo empleado en recorrerla) de una partícula en un momento determinado, la pendiente (razón entre la diferencia de las ordenadas y las abscisas de dos puntos en el plano cartesiano) de la recta tangente a una gráfica en un punto dado de ésta, etc.
PALABRA CLAVE EN CALCULO DIFERENCIAL : INCREMENTOS
Incrementos: cuando una cantidad variable pasa de un valor inicial a otro valor, se dice que ha tenido un incremento. Para calcular este incremento basta con hallar la diferencia entre el valor final y el inicial. Para denotar esta diferencia se utiliza el símbolo Dx, que se leee "delta x". El incremento puede ser positivo o negativo, dependiendo de si la variable aumenta o disminuye al pasar de un valor a otro. Por ejemplo, si el valor inicial de una variable x, x1, es igual a 3, y el valor final x2 es igual a 7, el incremento Dx = x2 - x1 = 7 - 3 = 4: la variable se ha incrementado positivamente en 4 unidades. En cambio, si el valor inicial es 7 y el valor final 3, Dx = x2 - x1 = 3 - 7 = -4: la variable ha tenido un incremento negativo (decremento) de 4 unidades.