Machine Learning and AI

Heterogeneities in structure and polarization have been employed to enhance the energy storage properties of ferroelectric films. The presence of nonpolar phases, however, weakens the net polarization. Here, we achieve a slush-like polar state with fine domains of different ferroelectric polar phases by narrowing the large combinatorial space of likely candidates using machine learning methods. The formation of the slush-like polar state at the nanoscale in cation-doped BaTiO3 films is simulated by phase field simulation and confirmed by aberration-corrected scanning transmission electron microscopy. The large polarization and the delayed polarization saturation lead to greatly enhanced energy density of 80 J/cm3 and transfer efficiency of 85% over a wide temperature range. Such a data-driven design recipe for a slush-like polar state is generally applicable to quickly optimize functionalities of ferroelectric materials. 

Interface-type (IT) metal/oxide Schottky memristive devices have attracted considerable attention over filament-type (FT) devices for neuromorphic computing because of their uniform, filament-free, and analog resistive switching (RS) characteristics. The most recent IT devices are based on oxygen ions and vacancies movement to alter interfacial Schottky barrier parameters and thereby control RS properties. However, the reliability and stability of these devices have been significantly affected by the undesired diffusion of ionic species. Herein, a reliable interface-dominated memristive device is demonstrated using a simple Au/Nb-doped SrTiO3 (Nb:STO) Schottky structure. The Au/Nb:STO Schottky barrier modulation by charge trapping and detrapping is responsible for the analog resistive switching characteristics. Because of its interface-controlled RS, the proposed device shows low device-to-device, cell-to-cell, and cycle-to-cycle variability while maintaining high repeatability and stability during endurance and retention tests. Furthermore, the Au/Nb:STO IT memristive device exhibits versatile synaptic functions with an excellent uniformity, programmability, and reliability. A simulated artificial neural network with Au/Nb:STO synapses achieves a high recognition accuracy of 94.72% for large digit recognition from MNIST database. These results suggest that IT resistive switching can be potentially used for artificial synapses to build next-generation neuromorphic computing. 

External website: https://discover.lanl.gov/news/0601-artificial-synapses 

DOE tweeted a link to our memristor story: https://twitter.com/ENERGY/status/1666092835446325248