Publication List (Peer Reviewed articles)
(with E. Imamura, K. Okamoto and M. Tsukamoto) Generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains, Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 9, 167–172.
(with E. Imamura, K. Okamoto and M. Tsukamoto) Eigenvalues of generalized Laplacians for generalized Poisson-Cauchy transforms on classical domains, Hiroshima Math. J. 39 (2009), no. 2, 237-275.
Generalized Laplacians on classical domains, RIMS Kokyuroku Bessatsu B20 (2010), 163–171.
A remark on the Bergman kernels of the Cartan-Hartogs domains, C. R. Acad. Sci. Paris Ser. I 350 (2012), 157–160.
A note on the Bergman kernel of a certain Hartogs domain, C. R. Acad. Sci. Paris Ser. I 350 (2012), 827–829.
The Bergman kernel of the Fock-Bargmann-Hartogs domain and the polylogarithm function, Complex Var. Elliptic Equ. 58 (2013), no. 6, 783–793.
(with H. Kim, and V. T. Ninh) The automorphism group of a certain unbounded non-hyperbolic domain, J. Math. Anal. Appl. 409 (2014), 637–642.
Automorphisms of normal quasi-circular domains, Bull. Sci. Math., 138 (2014), 406–415.
A generalization of the Forelli-Rudin construction and deflation identities, Proc. Amer. Math. Soc., 143 (2015), 1569-1581.
(with H. Kim) An application of a Diederich-Ohsawa theorem in characterizing some Hartogs domains, Bull. Sci. Math. 139 (2015), no. 7, 737–749.
Yet another proof of Poincaré's theorem, The American Mathematical Monthly, 122 (2015), no. 10, 1003-1004.
On the linearity of origin-preserving automorphisms of quasi-circular domains in C^n, J. Math. Anal. Appl., 426 (2015), 612–623.
On representative domains and Cartan's theorem, in Complex Analysis and Geometry, Springer Proceedings in Mathematics & Statistics, Vol. 144 (Springer Japan, 2015), 343-351.
Non-hyperbolic unbounded Reinhardt domains: non-compact automorphism group, Cartan's linearity theorem and explicit Bergman kernel, Tohoku Math. J., (2) 69 (2017), no. 2, 239-260.
In Lemma 2.8, "\sum_{j=0}^2 c_j Li_{-j}(g(t_1,t_2))" should be "c_0+ \sum_{j=0}^2 c_j Li_{-j}(g(t_1,t_2))". This does not harm the rest of results of [14].
(with H.Kim and L. Zhang) Invariant metrics on unbounded strongly pseudoconvex domains with non-compact automorphism group, Ann. Global Anal. Geom. 50 (2016), no. 3, 261–295.
(with H. Ishi and J.-D. Park) Bergman kernel function for Hartogs domains over bounded homogeneous domains, Journal of Geometric Analysis, 27 (2017), no. 2, 1703–1736.
(with L. Zhang) On origin-preserving automorphisms of quasi-circular domains, Journal of Geometric Analysis, 28 (2018), no. 2, 1840-1852.
(with H. Kim) The holomorphic automorphism groups of twisted Fock-Bargmann-Hartogs domains, Czechoslovak Mathematical Journal, 68 (143) (2018), 611-631.
Two variations of Boas-Fu-Straube's deflation identity, Archiv der Mathematik, 113 (2019), 505-514.
A Kaup-Upmeier type theorem for possibly unbounded non-hyperbolic Reinhardt domains via Bergman theoretic inequalities, Proc. Japan Acad. Ser. A Math. Sci. 101 (2025), no. 2, 7-11.
The Bergman kernel for the intersection of cylindrical Fock-Bargmann-Hartogs domains, Complex Anal. Oper. Theory 19 (2025), no. 8, Paper No. 226.
A remark on the Bergman kernels for the intersection of cylindrical Hartogs domains and polylogarithm functions, preprint.
Books (Textbooks in Japanese)
(with 西原賢, 本田竜広) 基礎からの微分積分学入門 (第4版, 2024年発行より著者に追加)
(with 西原賢, 濱田英隆, 本田竜広) 基礎からの微分積分学入門 (第3版, 2021年発行より著者に追加)