Metales Alcalinos

Litio

El litio (en griego: λιθίον, ‘piedrecita’)? es un elemento químico de símbolo Li y número atómico 3. En la tabla periódica, se encuentra en el grupo 1, entre los elementos alcalinos. En su forma pura, es un metal blando, de color blanco plata, que se oxida rápidamente en aire o agua. Su densidad es la mitad de la del agua, siendo el metal y elemento sólido más ligero.


Información general

Nombre, símbolo, número

Litio, Li, 3

Serie química

Metales alcalinos

Grupo, período, bloque

1, 2, s

Masa atómica

6.94174064 u

Configuración electrónica

[He]2s1

Electrones por nivel

2, 1 (imagen)

Propiedades atómicas

Electronegatividad

0,98(Pauling)

1 (Allred y Rochow) (escala de Pauling)

Radio atómico (calc)

167 pm (radio de Bohr)

Radio covalente

134 pm

Radio de van der Waals

183 pm

Estado(s) de oxidación

1 (base fuerte)

1.ª energía de ionización

520,2 kJ/mol

2.ª energía de ionización

7298,1 kJ/mol

3.ª energía de ionización

11815,0 kJ/mol

Propiedades físicas

Estado ordinario

Sólido (no magnético)

Densidad

535 kg/m3

Punto de fusión

453,69 K (181 °C)

Punto de ebullición

1615 K (1342 °C)

Entalpía de vaporización

146,89 kJ/mol

Entalpía de fusión

3 kJ/mol

Varios

Estructura cristalina

Cúbica centrada en el cuerpo

Calor específico

3582 J/(K·kg)

Conductividad eléctrica

10,8 × 106 S/m

Conductividad térmica

84,7 W/(K·m)

Velocidad del sonido

69 m/s a 293,15 K (20 °C)

Isótopos más estables

Isótopos del litio

iso

AN

Periodo

MD

Ed

PD

MeV

6Li

7,5%

Estable con 3 neutrones

7Li

92,5%

Estable con 4 neutrones

8Li

Sintético

838 ms

β-

16,004

8Be

Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.


Al igual que los demás metales alcalinos es univalente y muy reactivo, aunque menos que el sodio, por lo que no se encuentra libre en la naturaleza. Acercado a una llama la torna carmesí pero, si la combustión es violenta, la llama adquiere un color blanco brillante.

Se emplea especialmente en aleaciones conductoras del calor, en baterías eléctricas y, sus sales, en el tratamiento del trastorno bipolar.

Etimología

El litio toma su nombre del griego λίθoς -ου, ‘piedra’. El nombre del elemento proviene del hecho de haber sido descubierto en un mineral, mientras que el resto de los metales alcalinos fueron descubiertos en tejidos de plantas.

Historia

El litio fue descubierto por Johann Arfvedson en 1817. Arfvedson encontró este elemento en la espodumena y lepidolita de una mina de petalita, LiAl (Si2O5)2, de la isla Utö (Suecia) que estaba analizando. En 1818 Christian Gmelin fue el primero en observar que las sales de litio tornan la llama de un color rojo brillante. Ambos intentaron, sin éxito, aislar el elemento de sus sales, lo que finalmente consiguieron William Thomas Brande y sir Humphrey Davy mediante electrólisis del óxido de litio.

En 1923 la empresa Alemana Metallgesellschaft AG comenzó a producir litio mediante la electrólisis del cloruro de litio y cloruro de potasio fundidos.

El “triángulo del litio” compuesto por el salar de Uyuni en Bolivia, el salar de Atacama en Chile y el salar del Hombre Muerto en Argentina, concentran aproximadamente entre el 50 y el 85 % de ese mineral. El crecimiento acelerado en el uso del ion-litio ha provocado que la tonelada de litio suba su precio, desde los 450 dólares que costaba en 2003 hasta los 3000 dólares en 2009.

Uso

Por su elevado calor específico, el litio se emplea en aplicaciones de transferencia de calor, y por su elevado potencial electroquímico constituye un ánodo adecuado para las baterías eléctricas. También se le dan los siguientes usos:

Abundancia y obtención

El litio es un elemento moderadamente abundante y está presente en la corteza terrestre en 65 partes por millón (ppm). Esto lo coloca por debajo del níquel, cobre y wolframio y por encima del cerio y estaño, en lo referente a abundancia.

Argentina, Bolivia, Chile y Perú tienen el 85% de reservas de litio del planeta; Se encuentra disperso en pequeña proporción en ciertas rocas volcánicas y sales naturales, pero nunca libre, dada su gran reactividad en el Salar de Uyuni en Bolivia o el Salar del Hombre Muerto en Argentina Salar de Atacama en Chile (5 % de las reservas). Hay otros salares de menor tamaño en, Manaure (Colombia) y otros yacimientos importantes localizados recientemente en Afganistán. Desde 2010 se investigan en Afganistán, unas reservas cuya magnitud todavía está por determinarse con precisión, pero que podrían cambiar radicalmente la evaluación de los porcentajes antes mencionados y la evolución de los acontecimientos políticos y económicos de aquel país.

Las trazas de litio y berilio, junto al hidrógeno y helio, representan los únicos elementos obtenidos tras el Big Bang. Todos los demás fueron sintetizados a través de fusiones nucleares en estrellas en la secuencia principal o durante estallidos de supernovas. Industrialmente se obtiene mediante la electrólisis del cloruro de litio fundido (LiCl).

Desde la Segunda Guerra Mundial la producción de litio se ha incrementado enormemente, separándolo de las rocas de las que forma parte y de las aguas minerales. Los principales minerales de los que se extrae son lepidolita, petalita, espodumena y ambligonita. En Estados Unidos se obtiene de las salinas de California y Nevada principalmente.

Producción mundial en toneladas por año Fuente: USGS

1.

 Australia

45.000

2.

 Chile

19.300

3.

 China

10.800

4.

 Argentina

6.300

5.

 Brasil

2.400

6.

 Zimbabue

1.200

7.

 Portugal

900

8.

 Canadá

200

.

Isótopos

Los isótopos estables del litio son dos, 6Li y 7Li, siendo este último el más abundante (92.5 %). Se han caracterizado seis radioisótopos siendo los más estables el 8Li con un periodo de semidesintegración de 838 milisegundos y el 9Li con uno de 178.3 ms. El resto de isótopos radiactivos tienen periodos de semidesintegración menores de 8,5 ms. También se da, en laboratorio, el isótopo inestable 11Li.

Los pesos atómicos del litio varían entre 4.027 y 11.0348 uma del 4Li y el 11Li respectivamente. El modo de desintegración principal de los isótopos más ligeros que el isótopo estable más abundante (7Li) es la emisión protónica (con un caso de desintegración alfa) obteniéndose isótopos de helio; mientras que en los isótopos más pesados el modo más habitual es la desintegración beta, (con algún caso de emisión neutrónica) resultando isótopos de berilio.

El 7Li es uno de los elementos primordiales, producidos por síntesis nuclear tras el big bang. Los isótopos de litio se fraccionan sustancialmente en una gran variedad de procesos naturales, incluyendo la precipitación química en la formación de minerales, procesos metabólicos, y la sustitución del magnesio y el hierro en redes cristalinas de minerales arcillosos en los que el 6Li es preferido frente al 7Li, etc.

Precauciones

Al igual que otros metales alcalinos, el litio puro es altamente inflamable y ligeramente explosivo cuando se expone al aire y especialmente al agua. Es además corrosivo por lo que requiere el empleo de medios adecuados de manipulación para evitar el contacto con la piel. Se debe almacenar en un hidrocarburo líquido como vaselina o aceite mineral. Puede generar hipotiroidismo al impedir la entrada del yodo a la hormona tiroidea. El litio no es sustrato para la bomba sustrato sodio potasio ATPasa que impide el paso de los iones de sodio, reemplazando la concentración del sodio, lo cual en altas concentraciones puede resultar tóxico.

Por otro lado, para evitar una intoxicación por litio, se recomienda una ingesta de 2.5 – 3.5L de agua/día (el agua evita que el litio desplace a cationes de lugares importantes). Evitar la cafeína (es un diurético que favorece la pérdida de agua). Comer con sal (así se evita que el Na+ sea desplazado con más dificultad por el Li). Tener cuidado con la pérdida de líquido (sudor, vómitos, diarrea, diuréticos…).

Papel biológico

Se sabe que puede sustituir al sodio a nivel de las membranas biológicas, pero se ha encontrado que incrementa la permeabilidad celular y actúa sobre los neurotransmisores, favoreciendo la estabilidad del estado anímico. Por esto, se utiliza para tratar y prevenir episodios de manía en el trastorno bipolar.


Sodio

El sodio es un elemento químico de símbolo Na (del latín, natrium) con número atómico 11 que fue descubierto por sir Humphry Davy en 1807. Es un metal alcalino blando, untuoso, de color plateado, muy abundante en la naturaleza, encontrándose en la sal marina y el mineral halita. Es muy reactivo, arde con llama amarilla, se oxida en presencia de oxígeno y reacciona violentamente con el agua.

Sodio

Blanco plateado

Información general

Nombre, símbolo, número

Sodio, Na, 11

Serie química

Metales alcalinos

Grupo, período, bloque

1, 3, s

Masa atómica

22.98976928(2) u

Configuración electrónica

[Ne]3s1

Dureza Mohs

1,2

Electrones por nivel

2, 8, 1 (imagen)

Propiedades atómicas

Radio medio

180 pm

Electronegatividad

0,93 (escala de Pauling)

Radio atómico (calc)

190 pm (radio de Bohr)

Radio covalente

154 pm

Radio de van der Waals

227 pm

Estado(s) de oxidación

1 (base fuerte)

Óxido

Na2O

1.ª energía de ionización

495,8 kJ/mol

2.ª energía de ionización

4562 kJ/mol

3.ª energía de ionización

6910,3 kJ/mol

4.ª energía de ionización

9543 kJ/mol

5.ª energía de ionización

13354 kJ/mol

6.ª energía de ionización

16613 kJ/mol

7.ª energía de ionización

20117 kJ/mol

8.ª energía de ionización

25496 kJ/mol

9.ª energía de ionización

28932 kJ/mol

10.ª energía de ionización

141362 kJ/mol

Propiedades físicas

Estado ordinario

sólido (no magnético)

Densidad

968 kg/m3

Punto de fusión

370,87 K (98 °C)

Punto de ebullición

1156 K (883 °C)

Entalpía de vaporización

96,42 kJ/mol

Entalpía de fusión

2,598 kJ/mol

Presión de vapor

1,43 × 10-5 Pa a 1234 K

Varios

Estructura cristalina

cúbica centrada en el cuerpo

Calor específico

1230 J/(K·kg)

Conductividad eléctrica

21 × 106 S/m

Conductividad térmica

141 W/(K·m)

Velocidad del sonido

3200 m/s a 293,15 K (20 °C)

Isótopos más estables

Isótopos del sodio

iso

AN

Periodo

MD

Ed

PD

MeV

22Na

Sintético

2,602 a

β+

2,842

22Ne

23Na

100%

Estable con 12 neutrones

Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.


El sodio está presente en grandes cantidades en el océano en forma iónica. También es un componente de muchos minerales y un elemento esencial para la vida.

Características principales

Al igual que otros metales alcalinos, el sodio es un metal blando, ligero y de color plateado que no se encuentra libre en la naturaleza. El sodio flota en el agua descomponiéndola, desprendiendo hidrógeno y formando un hidróxido. En las condiciones apropiadas reacciona espontáneamente en el agua. Normalmente no arde en contacto con el aire por debajo de 40 °C.

Usos del sodio

El sodio metálico se emplea en síntesis orgánica como agente reductor. Es además componente del cloruro de sodio necesario para la vida. Otros usos son:

Papel biológico

El catión sodio (Na+) tiene un papel fundamental en el metabolismo celular, por ejemplo, en la transmisión de impulso nervioso (mediante el mecanismo de bomba de sodio-potasio). Mantiene el volumen y la osmolaridad. Participa, además del impulso nervioso, en la contracción muscular, el equilibrio ácido-base y la absorción de nutrientes por las membranas.

La concentración plasmática de sodio es en condiciones normales de 135-145 mmol/L. El aumento de sodio en la sangre se conoce como hipernatremia y su disminución hiponatremia.

Historia

El sodio (del italiano soda, "sosa") conocido en diversos compuestos, fue aislado en 1807 por sir Humphry Davy por medio de la electrólisis de la sosa cáustica. En la Europa medieval se empleaba como remedio para la migraña un compuesto de sodio denominado sodanum. El símbolo del sodio (Na) proviene de natrón (o natrium, del griego nítron), nombre que recibía antiguamente el carbonato sódico.

Abundancia

El sodio es relativamente abundante en las estrellas, detectándose su presencia a través de la línea D del espectro solar, situada aproximadamente en el amarillo. La corteza terrestre contiene aproximadamente un 2,6 % de sodio, lo que lo convierte en el sexto elemento más abundante, y el más abundante de los metales alcalinos.

Actualmente se obtiene por electrólisis de cloruro sódico fundido (proceso Downs), procedimiento más económico que el anteriormente usado, la electrólisis del hidróxido de sodio (proceso Castner-Kellner). Es el metal alcalino más barato. Hoy en día se produce principalmente por las compañías Métaux Spéciaux, en Pomblière St Marcel, Francia, y por Chemours, en Niagara Falls, Estados Unidos.

El compuesto más abundante de sodio es el cloruro sódico o sal común, aunque también se encuentra presente en diversos minerales como halita y zeolitas, etc.

Compuestos

Los compuestos de sodio de mayor importancia industrial son:

Isótopos

Se conocen trece isótopos de sodio. El único estable es el Na-23. Además existen dos isótopos radioactivos (Nucleidos cosmogénicos), Na-22 y Na-24, con períodos de semidesintegración de 2,605 años y aproximadamente 15 horas respectivamente.

Absorción y excreción de sodio

El sodio se absorbe en humanos, de manera fácil desde el intestino delgado y de allí es llevado a los riñones, en donde se infiltra y regresa a la sangre para mantener los niveles apropiados. La cantidad absorbida es proporcional a la consumida. Alrededor del 90-95 % de la pérdida normal del sodio es a través de la orina y el resto en las heces y el sudor. Se considera que lo normal de la cantidad de sodio excretada es igual a la cantidad ingerida. La secreción de sodio se mantiene por un mecanismo que involucra a los riñones (tasa de filtración glomerular, sistema renina-angiotensina), el sistema nervioso simpático, la circulación de catecolaminas y la presión sanguínea

Funciones

El catión sodio (Na+) tiene un papel fundamental en el metabolismo celular, por ejemplo, en la transmisión del impulso nervioso (mediante el mecanismo de bomba de sodio-potasio). Mantiene el volumen y la osmolaridad. Participa, además del impulso nervioso, en la contracción muscular, el equilibrio ácido-base y la absorción de nutrientes por las células.

La concentración plasmática de sodio es, en condiciones normales, de 135-145 mmol/L. El aumento de sodio en la sangre se conoce como hipernatremia y su disminución como hiponatremia. Como el catión (ion positivo) predominante del líquido extracelular de los fluidos animales y en humanos, la célula utiliza al sodio como una herramienta para la regulación del tamaño de dicho compartimiento así como del volumen del plasma. Estos fluidos, como el plasma sanguíneo y fluidos extracelulares en otros tejidos bañan las células y realizan funciones de transporte de nutrientes y sustancias de desecho en el organismo. Aunque el sistema para mantener el óptimo balance de sal y agua en el cuerpo es complejo, una de las principales maneras que el organismo mantiene este balance es a través de osmoreceptores ubicados en el hipotálamo, y su acción posterior sobre la hipófisis para la producción de vasopresina. Cuando los niveles de sodio en la sangre aumentan, los receptores de la sed (osmoreceptores) estimulan la sensación de sed. Cuando los niveles de sodio en la sangre son bajos, la excreción de sodio a través de la orina disminuye.

La pérdida relativa de agua podría causar que las concentraciones de sodio lleguen a ser más altas de lo normal, una condición conocida como hipernatremia, que resulta en una sed extraordinaria. Contrariamente, un exceso de agua corporal por mayor ingesta resultará en menor concentración de sodio en el plasma, conocido como hiponatremia, una condición captada por el hipotálamo a través de sus osmoreceptores, causando una disminución de la secreción de la hormona vasopresina de la glándula pituitaria posterior o hipófisis; esto conduce a una pérdida de agua a través de la orina, lo cual actúa para restaurar las concentraciones de sodio en el plasma hasta niveles normales.

Personas severamente deshidratadas, como las rescatadas del océano o en situaciones de supervivencia en desiertos, usualmente tienen altas concentraciones de sodio sanguíneo. Esto debe ser cuidadosamente y lentamente retornado a la normalidad, ya que una corrección demasiado rápida de la hipernatremia puede resultar en daño cerebral con edema celular, ya que el agua se mueve rápidamente hacia el interior de las células con un alto contenido osmolar.

Debido a que el sistema osmoreceptor/hipotálamo, ordinariamente trabaja bien sea para causar la ingesta de líquidos o la eliminación del mismo (orina), para restaurar las concentraciones de sodio a lo normal, este sistema puede ser usado en el tratamiento médico para regular el contenido del fluido corporal total, principalmente para controlar el contenido de sodio corporal. Por esto, cuando una droga potencialmente diurética es suministrada puede causar que los riñones excreten sodio, el efecto es acompañado por una excreción de agua corporal. Esto sucede porque el riñón es incapaz de retener eficientemente agua mientras excreta grandes cantidades de sodio. Adicionalmente, después de la excreción de sodio, el sistema osmoreceptor puede captar bajas concentraciones de sodio en la sangre y luego dirigir las perdidas urinarias de agua para corregir la hiponatremia.

Además de esta función importante, el sodio juega un importante papel en diversos procesos fisiológicos del organismo humano. Las células animales excitables, por ejemplo, permiten la entrada de sodio a su interior para causar la despolarización de la membrana celular. Un ejemplo de esto es la señal de transducción en el sistema nervioso central del humano, el cual depende del movimiento del sodio a través de la membrana celular en todos los nervios. Algunas neurotoxinas potentes, como las batracotoxinas, incrementan la permeabilidad del sodio en la membrana celular de células nerviosas y musculares, causando una masiva e irreversible despolarización de las membranas, lo cual trae consecuencias potencialmente fatales al organismo. Sin embargo, las drogas con efectos más pequeños sobre el movimiento de sodio en los nervios pueden tener diversos efectos farmacológicos como efectos antidepresivos, entre otros.

Hipernatremia

Se considera hipernatremia cuando la concentración de sodio en plasma o sangre es mayor a 145 meq/L. Las causas principales, se deben a una acción insuficiente de la hormona vasopresina o ADH (sea por déficit de producción en hipófisis o por falta de respuesta renal), a pérdidas excesivas de agua, y a un balance positivo de sal. El cuadro clínico, depende al igual que en la mayoría de los trastornos de electrolitos, de la magnitud y su forma de instauración. El síntoma predominante es la sed, que puede acompañarse de poliuria (aumento en el volumen de orina), diarrea y sudoración. La presencia de trastornos neurológicos, aparecen con valores por encima de 160 meq/L, que pueden caracterizarse por irritabilidad muscular, alteraciones del nivel de consciencia, coma e incluso convulsiones.

Hiponatremia

Se considera hiponatremia cuando la concentración de sodio en plasma es menor a 135 meq/L. Las causas principales incluyen: pérdidas grandes de sodio (por uso de diuréticos, diuresis osmótica o perdida de solutos a través de la orina que arrastran agua y sodio, enfermedades renales que aumenten la pérdida de sodio urinario.) aumento de la ingesta o aporte de agua al organismo, lo que causa aumento del agua a nivel extracelular. Entre los síntomas más comunes están, náuseas, vómitos, calambres musculares, alteraciones visuales, cefalea, letargia. Convulsiones y coma. Se considera que una disminución en la concentración de sodio por debajo de 125 meq/L es potencialmente fatal para el organismo humano.

Sodio en la dieta

La mayor fuente de sodio es el cloruro de sodio (la sal común), del cual el sodio constituye el 40 %. Sin embargo, todos los alimentos contienen sodio en forma natural, siendo más predominante la concentración en alimentos de origen animal que vegetal. Aproximadamente 3 gramos de sodio están contenidos en los alimentos que se consumen diariamente, sin la adición de cloruro de sodio o sal común, esto es importante considerarlo en pacientes que tengan una restricción o disminución en la ingesta de sal diaria (pacientes nefrópatas, diabéticos, hipertensos). El requerimiento de sodio es de 500 mg /día aproximadamente. La mayoría de las personas consumen más sodio que el que fisiológicamente necesitan. Para ciertas personas con presión arterial sensible al sodio, esta cantidad extra puede causar efectos negativos sobre la salud.

Precauciones

Fotografía de una explosión de sodio en contacto con agua.

En forma metálica el sodio es explosivo en agua y con muchos otros elementos. El metal debe manipularse siempre cuidadosamente y almacenarse en atmósfera inerte, generalmente de argón evitando el contacto con el agua y otras sustancias con las que el sodio reacciona, como el oxígeno:

2Na + 2H2O ----------> 2NaOH + H2(g)+ Energía

La explosión del sodio con el agua es debida a la generación de hidrógeno en esta y con la consecuente energía liberada por la reacción exergónica se pueden producir explosiones del hidrógeno generado. Por lo tanto se debe tener mucho cuidado, trabajar con precaución y con los elementos necesarios para protegerse de sus reacciones químicas.

Potasio

El potasio es un elemento químico de la tabla periódica cuyo símbolo químico es K (del latín Kalium y del árabe. القلية, DMG al-qalya, "ceniza de plantas"), cuyo número atómico es 19. Es un metal alcalino de color blanco-plateado, que abunda en la naturaleza en los elementos relacionados con el agua salada y otros minerales. Se oxida rápidamente en el aire, es muy reactivo, especialmente en agua, y se parece químicamente al sodio.


Blanco plateado

Información general

Nombre, símbolo, número

Potasio, K, 19

Serie química

Metales alcalinos

Grupo, período, bloque

1, 4, s

Masa atómica

39,0983 u

Configuración electrónica

[Ar]4s1

Electrones por nivel

2, 8, 8, 1 (imagen)

Propiedades atómicas

Radio medio

220 pm

Electronegatividad

0,82 (escala de Pauling)

Radio atómico (calc)

243 pm (radio de Bohr)

Radio covalente

196 pm

Radio de van der Waals

275 pm

Estado(s) de oxidación

1 (base fuerte)

1.ª energía de ionización

418,8 kJ/mol

2.ª energía de ionización

3052 kJ/mol

3.ª energía de ionización

4420 kJ/mol

4.ª energía de ionización

5877 kJ/mol

5.ª energía de ionización

7975 kJ/mol

6.ª energía de ionización

9590 kJ/mol

7.ª energía de ionización

11343 kJ/mol

8.ª energía de ionización

14944 kJ/mol

9.ª energía de ionización

16963,7 kJ/mol

10.ª energía de ionización

48610 kJ/mol

Propiedades físicas

Estado ordinario

Sólido

Densidad

856 kg/m3

Punto de fusión

336,53 K (63 °C)

Punto de ebullición

1032 K (759 °C)

Entalpía de vaporización

79,87 kJ/mol

Entalpía de fusión

2,334 kJ/mol

Presión de vapor

1,06×10-4 Pa a 336,5 K

Varios

Estructura cristalina

cúbica centrada en el cuerpo

Calor específico

757 J/(K·kg)

Conductividad eléctrica

1,64x107 S/m

Conductividad térmica

102,4 W/(K·m)

Velocidad del sonido

2000 m/s a 293,15 K (20 °C)

Isótopos más estables

iso

AN

Periodo

MD

Ed

PD

MeV

39K

93,26 %

Estable con 20 neutrones

40K

0,012 %

1,277 × 109 años

β-

ε

1,311

1,505

40Ca

40Ar

41K

6,73 %

Estable con 22 neutrones

Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.


Características principales

Potasio


Es el quinto metal más ligero y liviano; es un sólido blando que se corta con facilidad con un cuchillo, tiene un punto de fusión muy bajo, arde con llama violeta y presenta un color plateado en las superficies expuestas al aire, en cuyo contacto se oxida con rapidez, lo que obliga a almacenarlo recubierto de aceite.

Al igual que otros metales alcalinos reacciona violentamente con el agua desprendiendo hidrógeno, incluso puede inflamarse espontáneamente en presencia de agua

Aplicaciones

Otras sales de potasio importantes son el bromuro, cianuro, hidróxido, yoduro, y el sulfato.

El ion K+ está presente en los extremos de los cromosomas (en los telómeros) estabilizando la estructura. Asimismo, el ion hexahidratado (al igual que el correspondiente ion de magnesio) estabiliza la estructura del ADN y del ARN compensando la carga negativa de los grupos fosfato.

La bomba de sodio es un mecanismo por el cual se consiguen las concentraciones requeridas de iones K+ y Na+ dentro y fuera de la célula —concentraciones de iones K+ más altas dentro de la célula que en el exterior— para posibilitar la transmisión del impulso nervioso.

Las hortalizas (brócoli, remolacha, berenjena y coliflor) judías y las frutas (los bananos y las de hueso, como aguacate, albaricoque, melocotón, cereza, ciruela), son alimentos ricos en potasio.

El descenso del nivel de potasio en la sangre provoca hipopotasemia.

Es uno de los elementos esenciales para el crecimiento de las plantas —es uno de los tres que se consumen en mayor cantidad— ya que el ion potasio, que se encuentra en la mayoría de los tipos de suelo, interviene en la respiración.

Historia

El potasio (del latín científico potassium, y este del alemán pottasche, ceniza de pote) nombre con que lo bautizó Humphry Davy al descubrirlo en 1807, fue el primer elemento metálico aislado por electrólisis, en su caso del hidróxido de potasio (KOH), compuesto de cuyo nombre latino, Kalĭum, proviene el símbolo químico del potasio.

El propio Davy hacía el siguiente relato de su descubrimiento ante la Royal Society of London el 19 de noviembre de 1807: «Coloqué un pequeño fragmento de potasa sobre un disco aislado de platino que comunicaba con el lado negativo de una batería eléctrica de 250 placas de cobre y zinc en plena actividad. Un hilo de platino que comunicaba con el lado positivo fue puesto en contacto con la cara superior de la potasa. Todo el aparato funcionaba al aire libre. En estas circunstancias se manifestó una actividad muy viva; la potasa empezó a fundirse en sus dos puntos de electrización. Hubo en la cara superior (positiva) una viva efervescencia, determinada por el desprendimiento de un fluido elástico; en la cara inferior (negativa) no se desprendía ningún fluido elástico, pero pequeños glóbulos de vivo brillo metálico completamente semejantes a los glóbulos de mercurio. Algunos de estos glóbulos, a medida que se formaban, ardían con explosión y llama brillante; otros perdían poco a poco su brillo y se cubrían finalmente de una costra blanca. Estos glóbulos formaban la sustancia que yo buscaba; era un principio combustible particular, era la base de la potasa: el potasio.»

La importancia del descubrimiento radica en que confirmó la hipótesis de Antoine Lavoisier de que si la sosa y la potasa reaccionaban con los ácidos de igual modo que los óxidos de plomo y plata era porque estaban formados de la combinación de un metal con el oxígeno, extremo que se confirmó al aislar el potasio y tan solo una semana después el sodio por electrólisis de la sosa. Además, la obtención del potasio permitió el descubrimiento de otros elementos, ya que dada su gran reactividad es capaz de descomponer óxidos para combinarse y quedarse con el oxígeno; de este modo pudieron aislarse el silicio, el boro y el aluminio.

Abundancia

El potasio constituye del orden del 2,4 % en peso de la corteza terrestre siendo el séptimo más abundante. Debido a su solubilidad es muy difícil obtener el metal puro a partir de sus minerales. Aun así, en antiguos lechos marinos y de lagos existen grandes depósitos de minerales de potasio (carnalita, langbeinita, polihalita y silvina) en los que la extracción del metal y sus sales es económicamente viable.

Propiedades químicas

El potasio debe ser protegido del aire para prevenir la corrosión del metal por el óxido e hidróxido. A menudo, las muestras son mantenidas bajo un medio reductor como el queroseno. Como otros metales alcalinos, el potasio reacciona violentamente con agua, produciendo hidrógeno. La reacción es notablemente más violenta que la del litio o sodio con agua, y es suficientemente exotérmica para que el gas hidrógeno desarrollado se encienda. Como el potasio reacciona rápidamente con aún los rastros del agua, y sus productos de reacción son permanentes, a veces es usado solo, o como NaK (una aleación con el sodio que es líquida a temperatura ambiente) para secar solventes antes de la destilación. En este papel, el potasio sirve como un potente disecante. El hidróxido de potasio reacciona fuertemente con el dióxido de carbono, debido a la alta energía del ion K+. El ion K+ es incoloro en el agua. Los métodos de separación del potasio incluyen precipitación, algunas veces por análisis gravimétrico.

Isótopos

Se conocen diecisiete isótopos de potasio, tres de ellos naturales 39K (93,3 %), 40K (0,01 %) y 41K (6,7 %). El isótopo 40K, con un periodo de semidesintegración de 1,278x109 años, decae a 40Ar (11,2 %) estable mediante captura electrónica y emisión de un positrón, y el 88,8 % restante a 40Ca mediante desintegración β.

La desintegración del 40K en 40Ar se emplea como método para la datación de rocas. El método K-Ar convencional se basa en la hipótesis de que las rocas no contenían argón cuando se formaron y que el formado no escapó de ellas si no que fue retenido de modo que el presente proviene completa y exclusivamente de la desintegración del potasio original. La medición de la cantidad de potasio y 40Ar y aplicación de este procedimiento de datación es adecuado para determinar la edad de minerales como el feldespato volcánico, moscovita, biotita y hornblenda y en general las muestras de rocas volcánicas e intrusivas que no han sufrido alteración.

Más allá de la verificación, los isótopos de potasio se han utilizado mucho en estudios del clima, así como en estudios sobre el ciclo de los nutrientes por ser un macro-nutriente requerido para la vida.

El isótopo 40K está presente en el potasio natural en cantidad suficiente como para que los sacos de compuestos de potasio comercial puedan emplearse en las demostraciones escolares como fuente radiactiva.

Función biológica

Potasio en el cuerpo

El potasio es el catión mayor del líquido intracelular del organismo humano. Está involucrado en el mantenimiento del equilibrio normal del agua, el equilibrio osmótico entre las células y el fluido intersticial y el equilibrio ácido-base, determinado por el pH del organismo. El potasio también está involucrado en la contracción muscular y la regulación de la actividad neuromuscular, al participar en la transmisión del impulso nervioso a través de los potenciales de acción del organismo humano. Debido a la naturaleza de sus propiedades electrostáticas y químicas, los iones de potasio son más pequeños que los iones de sodio, por lo que los canales iónicos y las bombas de las membranas celulares pueden distinguir entre los dos tipos de iones; bombear activamente o pasivamente permitiendo que uno de estos iones pase, mientras que bloquea al otro. El potasio promueve el desarrollo celular y en parte es almacenado a nivel muscular, por lo tanto, si el músculo está siendo formado (periodos de crecimiento y desarrollo) un adecuado abastecimiento de potasio es esencial. Una disminución importante en los niveles de potasio sérico (inferior 3,5 meq/L) puede causar condiciones potencialmente fatales conocida como hipokalemia, con resultado a menudo de situaciones como diarrea, diuresis incrementada, vómitos y deshidratación. Los síntomas de deficiencia incluyen: debilidad muscular, fatiga, astenia, calambres, a nivel gastrointestinal: íleo, estreñimiento, anormalidades en el electrocardiograma, arritmias cardiacas, y en causas severas parálisis respiratorias y alcalosis.

La hiperkalemia, o aumento de los niveles de potasio por encima de 5,5 meq/L, es uno de los trastornos electrolíticos más graves y puede ser causado por aumento del aporte (oral o parenteral: vía sanguínea), redistribución (del líquido intracelular al extracelular) o disminución de la excreción renal. Por lo general, las manifestaciones clínicas aparecen con niveles mayores a 6,5 meq/L, siendo las principales: cardiovasculares: con cambios en el electrocardiograma, arritmias ventriculares y asístole (paro cardíaco), a nivel neuromuscular: parestesias, debilidad, falla respiratoria y a nivel gastrointestinal náuseas y vómitos.

Absorción, filtración y excreción

El potasio es absorbido de forma rápida desde el intestino delgado. Entre 80 y 90 % del potasio ingerido es excretado en la orina, el resto es perdido en las heces. Los riñones mantienen los niveles normales de potasio en suero a través de su habilidad de filtrar, reabsorber y excretar potasio bajo la influencia de la hormona aldosterona. Conjuntamente con el sodio, ambos regulan el balance entre fluidos y electrolitos en el organismo, ya que son los principales cationes del líquido intracelular (potasio) y extracelular (sodio) de los fluidos corporales totales del organismo. La concentración del sodio en el plasma es cerca de 145 meq/L, mientras que la del potasio es de 3,5 a 4,5 meq/L (en plasma). El plasma es filtrado a través de los glomérulos de los riñones en cantidades enormes, cerca de 180 L/día. Diariamente el sodio y potasio ingerido en la dieta debe ser reabsorbido; el sodio debe ser reabsorbido tanto como sea necesario para mantener el volumen del plasma y la presión osmótica correctamente, mientras que el potasio debe ser reabsorbido para mantener las concentraciones séricas del catión en 4,8 meq/L (cerca de 190 miligramos) (6). La bomba de sodio debe mantenerse siempre operativa para conservar el sodio. El potasio debe ser conservado algunas veces, pero dado que las cantidades de potasio en plasma son tan pequeñas, y la concentración de potasio a nivel celular es cerca de tres veces más grande, la situación no es tan crítica para el potasio. Dado que el potasio se transporta pasivamente en respuesta a un flujo contrario al sodio, la orina nunca puede disminuir las concentraciones de potasio en suero, excepto algunas veces donde se observe una excreción activa de agua. El potasio es secretado doblemente y reabsorbido tres veces antes de que la orina alcance los túbulos colectores del riñón. A este punto usualmente se alcanza la misma concentración en plasma. Si el potasio fuese eliminado de la dieta, obligaría al riñón a una excreción mínima de potasio alrededor de 200 mg/día cuando el potasio en suero decline a 3,0 meq/L en una semana aproximadamente. La bomba de sodio/potasio es un mecanismo por el cual se consiguen las concentraciones requeridas de iones K+ y Na+ dentro y fuera de la célula —concentraciones de iones K+ más altas dentro de la célula que en el exterior— para posibilitar la transmisión del impulso nervioso.

Potasio en la dieta

La ingesta adecuada de potasio puede ser generalmente garantizada al consumir una variedad de alimentos que contengan potasio, y la deficiencia es muy rara en individuos que consuman una dieta equilibrada. Los alimentos que son fuente alta de potasio incluyen: las hortalizas (papa o patata, brócoli, remolacha, berenjena y coliflor) y las frutas (las bananas o plátanos) y las de hueso (como las uvas, albaricoque, melocotón, cereza, ciruela, etc.), son alimentos ricos en potasio. El potasio es el tercer mineral más abundante en nuestro cuerpo. Está implicado en la reacción de los nervios, en el movimiento muscular y en su mantenimiento saludable.

Los alimentos que poseen más potasio son las judías, que aportan 1300 mg de potasio c/ 100 g; el germen de trigo, que aporta unos 842 mg de potasio c/ 100 g; el aguacate, que aporta 600 mg c/ 100 g; la soja aporta 515 mg c/ 100 g; las nueces, que aportan 441 mg de potasio c/ 100 g; la papa o patata, que aporta 421 mg de potasio c/ 100 g, y la banana o plátano, que aporta 396 mg c/ 100 g.

Las dietas altas en potasio pueden reducir el riesgo de hipertensión y la deficiencia de potasio (hipokalemia) combinada con una inadecuada ingesta de tiamina ha producido muertes en ratones experimentales.

Las sales de potasio, al poseer sabor salado, pueden sustituir fácilmente a las de sodio en aquellas dietas donde deba restringirse este último elemento.

Los suplementos de potasio en medicina son usados en la mayoría en conjunto con diuréticos de asa y tiazidas, una clase de diuréticos que disminuye los niveles de sodio y agua corporal cuando esto es necesario, pero a su vez causan también perdida de potasio en la orina. Individuos nefrópatas o que sufran de una enfermedad renal pueden sufrir efectos adversos sobre la salud al consumir grandes cantidades de potasio. En la insuficiencia renal crónica, los pacientes que se encuentran bajo tratamiento recibiendo diálisis renal deben seguir una dieta estricta en el contenido de potasio aportado, dado que los riñones controlan la excreción de potasio y la acumulación de potasio por falla renal puede causar problemas graves como una arritmia cardiaca fatal. La hipercalemia aguda (exceso de potasio) puede ser reducida a través de tratamiento con soda vía oral, glucosa, hiperventilación y perspiración.

Precauciones

El potasio sólido reacciona violentamente con el agua, más incluso que el sodio, por lo que se ha de conservar inmerso en un líquido apropiado como aceite o queroseno.


Rubidio

El rubidio es un elemento químico de la tabla periódica cuyo símbolo es el Rb y su número atómico es 37.

Rubidio


Plateado blanquecino

Información general

Nombre, símbolo, número

Rubidio, Rb, 37

Serie química

Metales alcalinos

Grupo, período, bloque

1, 5, s

Masa atómica

85,4678 u

Configuración electrónica

[Kr]5s1

Dureza Mohs

0,3

Electrones por nivel

2, 8, 18, 8, 1 (imagen)

Propiedades atómicas

Radio medio

235 pm

Electronegatividad

0,82 (escala de Pauling)

Radio atómico (calc)

265 pm (radio de Bohr)

Radio covalente

211 pm

Radio de van der Waals

303 pm

Estado(s) de oxidación

1

Óxido

Base fuerte

1.ª energía de ionización

403,0 kJ/mol

2.ª energía de ionización

2633 kJ/mol

3.ª energía de ionización

3860 kJ/mol

4.ª energía de ionización

5080 kJ/mol

5.ª energía de ionización

6850 kJ/mol

6.ª energía de ionización

8140 kJ/mol

7.ª energía de ionización

9570 kJ/mol

8.ª energía de ionización

13120 kJ/mol

9.ª energía de ionización

14500 kJ/mol

10.ª energía de ionización

26740 kJ/mol

Propiedades físicas

Estado ordinario

Sólido

Densidad

1532 kg/m3

Punto de fusión

312,46 K (39 °C)

Punto de ebullición

961 K (688 °C)

Entalpía de vaporización

72,216 kJ/mol

Entalpía de fusión

2,192 kJ/mol

Presión de vapor

1,56·10-4 Pa a 312,6 K

Varios

Estructura cristalina

Cúbica centrada en el cuerpo

Calor específico

363 J/(K·kg)

Conductividad eléctrica

7,79·106 S/m

Conductividad térmica

58,2 W/(K·m)

Velocidad del sonido

1300 m/s a 293,15 K (20 °C)

Isótopos más estables

Isótopos del rubidio

iso

AN

Periodo

MD

Ed

PD

MeV

85Rb

72,168%

Estable con 48 neutrones

87Rb

27,835%

4,88 × 1010 a

β-

0,283

87Sr

Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.


Características principales

El rubidio es un metal alcalino blando, de color plateado blanco brillante que empaña rápidamente al aire, muy reactivo. Al igual que los demás elementos del grupo 1 puede arder espontáneamente en aire con llama de color violeta amarillento, reacciona violentamente con el agua desprendiendo hidrógeno y forma amalgama con mercurio. Puede formar aleaciones con oro,los demás metales alcalinos, y alcalinotérreos, antimonio y bismuto.

Al igual que los demás metales alcalinos presenta un único estado de oxidación (+1) y reacciona con dióxido de carbono, hidrógeno, nitrógeno, azufre y halógenos.

Su obtención tiene el lugar 16 dentro de los metales más abundantes en la corteza terrestre.

Aplicaciones

El rubidio se puede ionizar con facilidad por lo que se ha estudiado su uso en motores iónicos para naves espaciales, aunque el xenón y el cesio han demostrado una mayor eficacia para este propósito. Se utiliza principalmente en la fabricación de cristales especiales para sistemas de telecomunicaciones de fibra óptica y equipos de visión nocturna. Otros usos son:

En muchas aplicaciones puede sustituirse por el cesio (o el compuesto de cesio correspondiente) por su semejanza química.

Historia

El rubidio (del latín rubidus, rojo oscuro) fue descubierto en 1861 por Robert Bunsen y Gustav Kirchhoff en la lepidolita utilizando un espectroscopio al detectar las dos rayas rojas características del espectro de emisión de este elemento y que son la razón de su nombre. Son pocas las aplicaciones industriales de este elemento que en 1920 empezó a usarse en células fotoeléctricas habiéndose usado sobre todo en actividades de investigación y desarrollo, especialmente en aplicaciones químicas y electrónicas.

Abundancia y obtención

A pesar de no ser un elemento muy abundante en la corteza terrestre ya que se encuentra entre los 56 elementos que engloban conjuntamente un 0,05% del peso de la misma, no puede considerarse escaso. Representando del orden de 78 ppm en peso, es el 23.er elemento más abundante y el 16.º de los metales superando a otros metales comunes como el cobre, el plomo y el zinc de los que se extraen miles de toneladas anuales frente a las tres del rubidio. Es además 30 veces más abundante que el cesio y 4 que el litio metales de cuya obtención se extrae como subproducto. La razón de tal disparidad estriba en que no se conocen minerales en los que el rubidio sea el elemento predominante y que su radio iónico es muy similar al del potasio (2000 veces más abundante) sustituyéndole —en ínfimas cantidades— en sus especies minerales donde aparece como impureza.

Se encuentra en diversos minerales como leucita, polucita y zinnwaldita. La lepidolita contiene un 1,5% de rubidio (puede superar en ocasiones el 3,15%) y es de donde se obtiene el metal en su mayoría; también otros minerales de potasio y cloruro de potasio contienen cantidades significativas de rubidio como para permitir su extracción rentable, así como los depósitos de polucita (que pueden contener hasta un 1,35% de rubidio) entre los que destacan los del lago Bernic en Manitoba, (Canadá).

El metal se obtiene, entre otros métodos, reduciendo el cloruro de rubidio con calcio en vacío, o calentando su hidróxido con magnesio en corriente de hidrógeno. Pequeñas cantidades pueden obtenerse calentando sus compuestos con cloro mezclados con óxido de bario en vacío. La pureza del metal comercializado varía entre 99 y 99,8%.

Isótopos

Se conocen 24 isótopos de rubidio y existiendo en la naturaleza tan solo dos, el Rb-85 y el radioactivo Rb-87. Las mezclas normales de rubidio son ligeramente radiactivas.

El isótopo Rb-87, que tiene un periodo de semidesintegración de 48,8 × 10 9 años, se ha usado mucho para la datación radiométrica de rocas. El Rb-87 decae a Sr-87 estable emitiendo una partícula beta negativa. Durante la cristalización fraccionada, el estroncio tiende a concentrarse en la plagioclasa quedando el rubidio en la fase líquida, de modo que la razón Rb/Sr en el magma residual se incrementa a lo largo del tiempo. Las mayores razones —de 10 o más— se hallan en las pegmatitas. Si la cantidad inicial de estroncio es conocida o puede extrapolarse, midiendo las concentraciones de Rb y Sr y el cociente Sr-87/Sr-86 puede determinarse la edad de la roca. Evidentemente la edad medida será la de la roca si ésta no ha sufrido alteraciones después de su formación.

La frecuencia de resonancia del átomo de Rb-87 se usa como referencia en normas y osciladores utilizados en transmisores de radio y televisión, en la sincronización de redes de telecomunicación y en la navegación y comunicación vía satélite. El isótopo se emplea además en la construcción de relojes atómicos.

El isótopo Rb-82 se utiliza en la obtención de imágenes del corazón mediante tomografía por emisión de positrones. Debido a su corto periodo de semidesintegración (1,273 minutos) se sintetiza, antes de su administración, a partir de estroncio-82 ya que en tan solo un día se desintegra prácticamente por completo

Precauciones

El rubidio reacciona violentamente con el agua pudiendo provocar la inflamación del hidrógeno desprendido en la reacción:

2 Rb + 2 H2O → 2 RbOH + H2

Para asegurar la pureza del metal y la seguridad en su manipulación se almacena bajo aceite mineral seco, en vacío o en atmósfera inerte.

Cesio

El cesio es el elemento químico con número atómico 55 y peso atómico de 132,905 u. Su símbolo es Cs, y es el más pesado de los metales alcalinos en el grupo IA de la tabla periódica, a excepción del francio (hasta febrero de 2007); se encuentra en componentes no orgánicos.

Cesio 


Plateado-Dorado

Información general

Nombre, símbolo, número

Cesio, Cs, 55

Serie química

Metales alcalinos

Grupo, período, bloque

1, 6, s

Masa atómica

132,90545 u

Configuración electrónica

[Xe]6s1

Dureza Mohs

0,2

Electrones por nivel

2, 8, 18, 18, 8, 1 (imagen)

Propiedades atómicas

Radio medio

260 pm

Electronegatividad

0,79 (escala de Pauling)

Radio atómico (calc)

298 pm (radio de Bohr)

Radio covalente

225 pm

Radio de van der Waals

343 pm

Estado(s) de oxidación

1

Óxido

base fuerte

1.ª energía de ionización

375,7 kJ/mol

2.ª energía de ionización

2234,3 kJ/mol

3.ª energía de ionización

3400 kJ/mol

Propiedades físicas

Estado ordinario

Sólido

Densidad

1879 kg/m3

Punto de fusión

301,59 K (28 °C)

Punto de ebullición

944 K (671 °C)

Entalpía de vaporización

67,74 kJ/mol

Entalpía de fusión

2,092 kJ/mol

Presión de vapor

2,5 kPa

Varios

Estructura cristalina

Cúbica centrada en el cuerpo

Calor específico

240 J/(K·kg)

Conductividad eléctrica

4,89 × 106 S/m

Conductividad térmica

35,9 W/(K·m)

Módulo elástico

1,7 GPa

Módulo de cizalladura

1,6 GPa

Isótopos más estables

Isótopos del cesio

iso

AN

Periodo

MD

Ed

PD

MeV

133Cs

100 %

Estable con 78 neutrones

134Cs

Sintético

2,0648 a

ε

β-

1,229

2,059

134Xe

134Ba

135Cs

Trazas

23 × 106 a

β-

0,269

135Ba

137Cs

Sintético

30,07 a

β-

1,176

137Ba

Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.


Historia

El cesio fue descubierto por Robert Bunsen y por Gustav Kirchhoff en el año 1860 mediante el uso del espectroscopio, al encontrar dos líneas brillantes de color azul en el espectro del carbonato de cesio y del cloruro de cesio. Dichas sales de cesio fueron aisladas por Robert Bunsen, precipitándolas en el agua mineral. A pesar de los intentos infructuosos de Bunsen por aislar el elemento en su forma metálica, hubo que esperar hasta 1862 para que Carl Setterberg pudiera aislarlo mediante electrólisis del cianuro de cesio fundido.

Como apunte, en el año 1967 se establece en la conferencia de pesos y medidas en París que un segundo es igual a 9 192 631 770 períodos de radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del isótopo 133 del átomo de cesio (133Cs), medidos a 0 K.

Características

La adición de una pequeña cantidad de cesio en agua fría produce una pequeña explosión

El cesio es un metal blando, ligero y de bajo punto de fusión. Es el segundo menos electronegativo de todos los elementos después del francio. El cesio reacciona en forma vigorosa con oxígeno para formar una mezcla de óxidos. En aire húmedo, el calor de oxidación puede ser suficiente para fundir y prender el metal. El cesio no reacciona con nitrógeno para formar nitruros, pero reacciona con el hidrógeno a temperaturas altas para producir un hidruro muy estable; reacciona en forma violenta con el agua y aun con hielo a temperaturas de hasta –116 °C así como con los halógenos, amoníaco y monóxido de carbono. En general, con compuestos orgánicos el cesio experimenta los mismos tipos de reacciones que el resto de los metales alcalinos, pero es mucho más reactivo.

Abundancia y obtención

El cesio no es muy abundante en la corteza terrestre, hay solo 7 partes por millón. Al igual que el litio y el rubidio, el cesio se encuentra como un constituyente de minerales complejos, y no en forma de halogenuros relativamente puros, como en el caso del sodio y del potasio. Es hallado frecuentemente en minerales lepidolíticos como los existentes en Rodesia.

Usos

El cesio metálico se utiliza en celdas fotoeléctricas, instrumentos espectrográficos, contadores de centelleo, bulbos de radio, lámparas militares de señales infrarrojas y varios aparatos ópticos y de detección. Los compuestos de cesio se usan en la producción de vidrio y cerámica, como absorbentes en plantas de purificación de dióxido de carbono, en microquímica. Las sales de cesio se han utilizado en medicina como agentes antishock después de la administración de drogas de arsénico. El isótopo cesio-137 se utiliza habitualmente en procedimientos de radioterapia interna también llamada braquiterapia para el tratamiento del cáncer.

Efectos del cesio sobre la salud

Los humanos pueden estar expuestos al cesio por respiración o al ingerirlo con alimentos y bebidas. En el aire los niveles de cesio son generalmente bajos, pero el cesio radioactivo ha sido detectado en algunos niveles en aguas superficiales y en muchos tipos de comidas.

La cantidad de cesio en comidas y agua depende de la emisión de cesio radiactivo de plantas de energía nuclear, mayoritariamente a través de accidentes, tal es el caso del Desastre de Chernobyl en 1986 y el Accidente nuclear de Fukushima Dai-Ichi en 2011. La gente que trabaja en industria de energía nuclear puede estar expuesta a altos niveles de cesio, pero son tomadas muchas medidas de seguridad para prevenirlo. Es poco probable que la gente que experimente el efecto del cesio sobre la salud pueda relacionarlo con este.

Cuando hay contacto con cesio radiactivo, algo altamente improbable, la persona puede experimentar daño celular a causa de la radiación emitida por las partículas del cesio. Esto puede traer como consecuencia efectos como náuseas, vómitos, diarreas, y hemorragias. Si la exposición es larga la gente puede incluso perder el conocimiento, entrar en coma o incluso morir. Cuan serios sean los efectos depende de la resistencia de cada persona, el tiempo de exposición y la concentración a la que esté expuesta.

El azul de Prusia (uso médico), también conocido como hexacianoferrato férrico de potasio, se usa como un medicamento para tratar la intoxicación por talio o cesio radiactivo.

Efectos ambientales del cesio

El cesio está en la naturaleza principalmente a causa de la erosión y desgaste de rocas y minerales. Es también liberado al aire, al agua y al suelo a través de la minería y fábricas de minerales. Los isótopos radiactivos del cesio pueden ser disminuidos solo en su concentración a través de la desintegración radiactiva. El cesio no radiactivo puede también ser destruido cuando entra en el ambiente o reacciona con otros compuestos en moléculas muy específicas.

Tanto el cesio radiactivo como el estable actúan químicamente igual en los cuerpos de los humanos y los animales.

El cesio en el aire puede viajar largas distancias antes de precipitarse en la tierra. La mayoría de los compuestos del cesio son muy solubles en agua. En suelos, por otro lado, el cesio no puede ser eliminado por el agua subterránea; allí permanece en las capas superiores del suelo y es fuertemente unido a las partículas del mismo, y como resultado no queda disponible para ser tomado por las raíces de las plantas. El cesio radiactivo tiene la oportunidad de entrar en las plantas al caer sobre las hojas. Los animales que son expuestos a muy altas dosis de cesio muestran cambios en el comportamiento, como es el incremento o la disminución de la actividad.


Francio

El francio, antiguamente conocido como eka-cesio y actinio K, es un elemento químico cuyo símbolo es Fr y su número atómico es 87. Su electronegatividad es la más baja conocida y es el segundo elemento menos abundante en la naturaleza (el primero es el astato). El francio es un metal alcalino altamente radiactivo y reactivo que se desintegra generando astato, radio y radón. Como el resto de los metales alcalinos, solo posee un electrón en su capa de valencia.

Información general

Nombre, símbolo, número

Francio, Fr, 87

Serie química

Metales alcalinos

Grupo, período, bloque

1, 7, s

Masa atómica

223 u

Configuración electrónica

[Rn]7s1

Dureza Mohs

Sin datos

Electrones por nivel

2, 8, 18, 32, 18, 8, 1 (imagen)

Propiedades atómicas

Radio medio

Sin datos pm

Electronegatividad

0,7 (Pauling)

0,9 (Allred y Rochow) (escala de Pauling)

Radio atómico (calc)

270 pm (radio de Bohr)

Radio iónico

194 pm (Fr+, hexacoordinado)

Radio covalente

260 pm

Radio de van der Waals

348 pm

Estado(s) de oxidación

1

Óxido

Base fuerte

1.ª energía de ionización

380 kJ/mol

Propiedades físicas

Estado ordinario

Líquido

Densidad

1870 kg/m3

Punto de fusión

300 K (27 °C)

Punto de ebullición

950 K (677 °C)

Entalpía de vaporización

65 kJ/mol

Entalpía de fusión

2 kJ/mol

Presión de vapor

Sin datos

Varios

Estructura cristalina

Cúbica centrada en el cuerpo

Calor específico

Sin datos J/(K·kg)

Conductividad eléctrica

3 × 106/m O S/m

Conductividad térmica

15 W/(K·m)

Velocidad del sonido

Sin datos m/s a 293,15 K (20 °C)

Isótopos más estables

Isótopos del francio

iso

AN

Periodo

MD

Ed

PD

MeV

221Fr

Sintético

4,8 min

a

6,457

217At

222Fr

Sintético

14,2 min

β-

2,033

222Ra

223Fr

Sintético

21,8 min

β-

1,149

5,430

221Ra

219At

Valores en el SI y condiciones normales de presión y temperatura, salvo que se indique lo contrario.

Representación de la distribución por capas de los electrones del francio.


Marguerite Perey descubrió este elemento en 1939. El francio fue el último elemento químico descubierto en la naturaleza antes de ser sintetizado. Fuera del laboratorio, el francio es extremadamente escaso, encontrándose en trazas en menas de uranio y de torio, donde el 223Fr está continuamente formándose y desintegrándose. La cantidad de 223Fr en la corteza terrestre en un momento dado posiblemente no exceda los 30 gramos; el resto de los isótopos son sintéticos. La mayor cantidad recuperada de cualquiera de sus isótopos fue un clúster de 10 000 millones de átomos (de 210Fr) sintetizado como un gas ultra frío en Stony Brook en 1996.

Propiedades físicas y químicas

El francio es menos estable que cualquier otro elemento más ligero que el nobelio (elemento 102); su isótopo más estable, el 223Fr, posee un período de semidesintegración menor de 22 minutos. El astato, que es el siguiente elemento menos estable, tiene período de semidesintegración máximo de 8,5 horas. Todos los isótopos del francio se desintegran generando astato, radio y radón.

El francio es un metal alcalino cuyas propiedades químicas son semejantes a las del cesio. Puesto que es un elemento muy pesado con un solo electrón de valencia, posee el mayor peso equivalente de todos los elementos químicos. El francio tiene la más baja electronegatividad de todos los elementos conocidos, con un valor de 0,7 en la escala de Pauling. Le sigue el cesio con un valor de 0,79. El francio líquido, en el supuesto de poder ser obtenido, tendría una tensión superficial de 0,05092 J·m–2 en el punto de fusión.

El francio coprecipita, junto con muchas sales de cesio, como el perclorato de cesio, formando pequeñas cantidades de perclorato de francio. Esta coprecipitación puede emplearse para aislar el francio, adaptando el método de precipitación del radiocesio de Glendenin y Nelson. También coprecipita con otras sales de cesio como el yodato, el picrato, el tartrato (también con el tartrato de rubidio), el cloroplatinato y el silicowolframato. Otras coprecipitaciones se producen con el ácido silicowolfrámico y con el ácido perclórico, sin necesidad de que otro metal alcalino esté presente como portador, lo que posibilita otros métodos de separación para el francio. Casi todas las sales de francio son solubles en agua.

Aplicaciones del francio

No hay aplicaciones comerciales para el francio debido a su escasez y a su inestabilidad. Solo ha sido usado en tareas de investigación, tanto en el campo de la biología como en el de la estructura atómica. Se pensó que el francio podría servir de ayuda para el diagnóstico de enfermedades relacionadas con el cáncer; sin embargo, finalmente esta aplicación se ha considerado impracticable.

La capacidad para sintetizar el francio, atraparlo y enfriarlo, junto con su estructura atómica relativamente simple, lo han convertido en sujeto de experimentación en espectroscopia especializada. Estos experimentos han conducido a la obtención de información más específica sobre los niveles energéticos y las constantes de acoplamiento entre partículas subatómicas. Estudios realizados sobre la luz emitida por iones de 210Fr atrapados por láser han arrojado datos precisos sobre las transiciones entre niveles energéticos atómicos. Se ha comprobado que estos resultados experimentales son bastante parecidos a los que predice la Teoría Cuántica.

Historia

Ya en 1870, los químicos pensaban que debía existir un metal alcalino más allá del cesio, con un número atómico de 87. Se le denominaba con el nombre provisional de eka-cesio. Algunos equipos de investigación intentaron localizar y aislar el elemento en cuestión y se tiene constancia de al menos cuatro anuncios públicos falsos que proclamaban haber descubierto dicho elemento antes de que fuera realmente descubierto.

Descubrimientos erróneos e incompletos

El químico ruso D. K. Dobroserdov fue el primer científico que aseguró haber descubierto eka-cesio. En 1925, observó una débil radiactividad en una muestra de potasio, otro metal alcalino, y concluyó que el eka-cesio contaminaba la muestra. Publicó una tesis sobre sus predicciones de las propiedades del eka-cesio, en la que nombraba al elemento con el nombre de russio, en honor a su país de procedencia. Poco tiempo después, empezó a centrarse en su carrera docente en el Instituto Politécnico de Odessa, abandonando por completo sus esfuerzos por aislar el eka-cesio.

Al año siguiente, en 1926, los químicos ingleses Gerald J. F. Druce y Frederick H. Loring analizaron una radiografía de rayos X del sulfato de manganeso (II). Observaron líneas espectrales que creyeron pertenecientes al eka-cesio. Anunciaron el descubrimiento del elemento 87 y propusieron el nombre de alcalinio para el que sería el metal alcalino más pesado.

En 1930, el profesor Fred Allison del Instituto Politécnico de Alabama anunció haber descubierto el elemento 87 analizando polucita y lepidolita usando su máquina magneto - óptica. Allison propuso que fuera bautizado como virginio, en honor a su estado natal, Virginia, así como que se usaran los símbolos Vi y Vm. En 1934, sin embargo, el profesor MacPherson de la UC Berkeley desautorizó la efectividad del dispositivo de Allison y la validez de su falso descubrimiento.

En 1936, el químico rumano Horia Hulubei y su colega francesa Yvette Cauchois analizaron también la polucita, esta vez usando su aparato de rayos X de alta resolución. Observaron varias líneas de emisión débiles que supusieron que sería debidas al elemento 87. Hulubei y Cauchois anunciaron su descubrimiento y propusieron el nombre de moldavio, con el símbolo Ml, en honor a Moldavia, la provincia rumana, actualmente independiente, donde llevaron a cabo su trabajo. En 1937, el trabajo de Hulubei fue criticado por el físico americano F. H. Hirsh Jr., que rechazó los métodos de investigación del químico rumano. Hirsh estaba convencido de que el eka-cesio no podría ser encontrado en la naturaleza, y que las líneas que había observado Hulubei eran debidas al mercurio o al bismuto. El químico rumano, sin embargo, insistió en que su aparato de rayos X y sus métodos eran demasiado precisos como para cometer tales errores. Jean Baptiste Perrin, ganador del premio Nobel y mentor de Hulubei, apoyó al moldavio como el verdadero eka-cesio en lugar del recién descubierto francio de Marguerite Perey. Perey, sin embargo, criticó de manera continua el trabajo de Hulubei hasta que ella fue acreditada como la única descubridora del elemento 87.

Análisis de Perey

El eka-cesio fue realmente descubierto en 1939 por Marguerite Perey, del Instituto Curie de París (Francia), cuando purificó una muestra de 227Ac que poseía una energía de desintegración de 220 keV. Sin embargo, Perey advirtió en la desintegración partículas con un nivel energético por debajo de los 80 keV. Pensó que esta actividad debía ser causada por un producto previo de desintegración no identificado, un producto separado durante la purificación, pero que volvía a emerger del 227Ac puro. Varias pruebas eliminaron la posibilidad de que se fuera de torio, radio, plomo, bismuto o talio, tratándose por tanto de un elemento desconocido. El nuevo producto mostraba propiedades químicas propias de un metal alcalino (tal como la coprecipitación con las sales de cesio), lo que llevó a Perey a pensar que se encontraba frente al elemento 87, generado por la desintegración alfa del 227Ac. Perey intentó entonces determinar la proporción entre la desintegración beta y la desintegración alfa del 227Ac. Su primera prueba indicaba que la desintegración alfa alcanzaba el 0.6%, resultado que fue revisado hasta llegar al valor de un 1%.

Perey nombró al nuevo isótopo como actinio K, que se refería a lo que ahora conocemos como 223Fr, y en 1946, propuso el nombre de catio para su recién descubierto elemento, ya que creía que era el catión más electropositivo de todos los elementos químicos. Irène Joliot-Curie, una de las supervisoras de Perey, se opuso a ese nombre pues parecía hacer más referencia a "cat" (gato en inglés) que a catión. Entonces Perey sugirió el nombre de francio como homenaje al país donde lo descubrió. Este nombre fue oficialmente adoptado por la Unión Internacional de Químicos en 1949, y se le asignó el símbolo Fa, pero esta abreviatura fue cambiada por Fr poco después. El francio es el último de los elementos que se encuentran en la naturaleza en ser descubierto, siendo el anterior el renio, en 1925. Posteriores investigaciones sobre la estructura del francio fueron llevadas a cabo por Sylvain Lieberman y su equipo en el CERN en los años 70 y 80, entre otros.

Abundancia

Esta muestra de uraninita contiene cerca de 100.000 átomos (3.3×10-20 g) de francio-223 en cualquier momento dado.

Natural

Esta muestra de uraninita contiene cerca de 100.000 átomos (3.3×10-20 g) de francio-223 en cualquier momento dado.

El 223Fr resulta de la desintegración alfa del 227Ac y puede encontrarse en trazas en los minerales de uranio y de torio. En una muestra de uranio, se estima que hay solo un átomo de francio por cada 1×1018 átomos de uranio. Después del astato, el francio es el elemento menos abundante en la corteza terrestre.

Sintetizado

El francio puede sintetizarse en la reacción nuclear:

197Au + 18O → 210Fr + 5n.

Este proceso, desarrollado por Stony Brook Physics, genera isótopos de francio con masas 209, 210 y 211, que pueden aislarse en una trampa magneto-óptica (MOT). La tasa de producción de un isótopo en particular depende en la energía del haz de oxígeno. El haz del Stony Brook LINAC produce 210Fr en el objetivo de oro con la reacción nuclear 197Au + 18O → 210Fr + 5n. La producción requiere de algún tiempo para desarrollarse y entenderse. Esto es crítico para operar el objetivo oro muy cercano de su punto de fusión y para asegurarse de que su superficie esté muy limpia. La reacción nuclear incrusta de manera profunda los átomos de francio con el objetivo de oro, y se debe quitar de manera eficiente. Los átomos se difunden rápidamente en la superficie del objetivo de oro y se liberan en forma de iones, sin embargo, esto no sucede todo el tiempo. Los iones de francio son guiados por las lentes electrostáticas hasta que aterrizan en una superficie de itrio caliente y se convierten en neutrales otra vez. Entonces el francio se inyecta en una ampolla de vidrio. Los rayos láser y un campo magnético enfrían y confinan a los átomos. Aunque los átomos permanezcan en la trampa de solo unos 20 segundos antes de que escapen (o se descompongan), un flujo constante de átomos frescos reemplaza a los perdidos, manteniendo el número de átomos atrapados aproximadamente constantes durante varios minutos o más tiempo. Inicialmente, fueron atrapados alrededor de 1000 átomos de francio en el experimento. Esto fue gradualmente mejorado y la instalación es capaz de atrapar más de 300.000 átomos neutros de francio la vez. Aunque se trata de átomos neutrales "metálicos" ("metales francios"), están en un estado que no se considera gaseoso. Se atrapa el suficiente Francio que la luz emitida por los átomos puede ser capturada por una cámara de video, ya que son fluorescentes. Los átomos aparecen como una esfera brillante alrededor de 1 milímetro de diámetro. Esta fue la primera vez que alguien vio francio. Los investigadores ahora pueden hacer mediciones muy sensibles de la luz emitida y absorbida por los átomos atrapados, proporcionando así los primeros resultados experimentales sobre diversas transiciones entre niveles de energía atómica en francios. Las mediciones iniciales muestran muy buen acuerdo entre los valores experimentales y los cálculos basados en la teoría cuántica. Otros métodos de síntesis incluyen bombardear radio con neutrones, y bombardear torio con protones, deuterones o iones de helio. El francio no ha sido, y probablemente no será, sintetizado en cantidades lo suficientemente grandes como para ser pesado.

Isótopos

Diagrama de desintegración radiactiva en el que se puede ver cómo el francio forma parte de las serie del actinio y de la serie del plutonio. (Pulsar imagen para verla aumentada)

Se conocen 34 isótopos del francio que comprenden un rango de masas atómicas desde 199 hasta 232. El francio posee siete isómeros nucleares metaestables. El 223Fr y el 221Fr son los únicos isótopos que se presentan en la naturaleza, aunque el primero es mucho más común que el segundo.

El 223Fr es el isótopo más estable con un periodo de semidesintegración de 21,8 minutos, y es bastante improbable que alguna vez se descubra o sintetice un isótopo de francio con un periodo mayor. El 223Fr es el quinto producto de la serie de desintegración del actinio, procedente del 227Ac. El 223Fr se desintegra después para generar 223Ra por desintegración beta (energía de desintegración: 1149 keV), con una ruta menor (0,006%) de desintegración alfa que genera 219At (energía de desintegración: 5,4 MeV).

El 221Fr posee un periodo de semidesintegración de 4,8 minutos. Es el noveno producto de la serie de desintegración del plutonio, procedente del 225Ac. El 221Fr se desintegra después para generar 217At por desintegración alfa (energía de desintegración: 6,457 MeV).

El isótopo en estado fundamental menos estable es el 215Fr, con un periodo de semidesintegración de 0,12 μs (energía de desintegración hasta 211At: 9,54 MeV). Su isómero metaestable, el 215mFr, es aún menos estable, con un periodo de semidesintegración de 3,5 ns.