My research mainly considers aspects of Distribution Theory and Directional Statistics. The book and various of the papers identified below deal with Circular Statistics, a branch of the wider field of Directional Statistics. The focus of much of my recent research has been the identification of tractable and flexible models capable of describing those features (such as varying degrees of asymmetry and kurtosis) often exhibited by real data as well as the development of methods of statistical inference for them.
If you are researching in the field of Directional Statistics you may find this LaTeX bib file, with over 1700 bibliographical references, a useful resource: DirectionalStats.bib
Researcher ID L-5760-2014
h index amongst Spanish Statistics & Probability researchers h index ranking
Google Scholar Citations
Books
Pewsey, A., Neuhäuser, M. & Ruxton, G.D. (2013) Circular Statistics in R. Oxford University Press, Oxford.
Book Chapters
In fulfillment of the signed copyright agreement, the link below takes you to the version of the chapter prior to the production of its proofs. The PV link takes you to the publisher's website where the final published version of the chapter is available.
Pewsey, A. (2006) Some observations on a simple means of generating skew distributions. In Advances in Distribution Theory, Order Statistics and Inference (Eds. N. Balakrishnan, E. Castillo & J.M. Sarabia). Birkhäuser: Boston Massachusetts, pp. 75-84. PV
Pewsey, A. (2018) Applied Directional Statistics with R: An Overview. In Applied Directional Statistics: Modern Methods and Case Studies (Eds. C. Ley & T. Verdebout). CRC Press: Boca Raton Florida, pp. 277-290. PV
Online Encyclopedia Entries
In fulfillment of the signed copyright agreement, the link below takes you to a pdf version of the StatsRef entry. The PV link takes you to the publisher's website where the StatsRef entry is available.
Pewsey, A. (2018) Circular Data Models. Wiley StatsRef-Statistics Reference Online, John Wiley & Sons Ltd. PV
Recent Published Papers
In fulfillment of signed copyright agreements, a link below takes you to the version of a paper prior to the production of its proofs. A PV link takes you to the publisher's website where the final published version of the paper is available, a Data link to data analysed, a TR link to a technical report, and an SM link to supplementary materials.
1. Pewsey, A. (2000) Problems of inference for Azzalini’s skew-normal distribution. Journal of Applied Statistics, 27, 859-870. PV Data
2. Pewsey, A. (2000) The wrapped skew-normal distribution on the circle. Communications in Statistics - Theory & Methods, 29, 2459-2472. PV Data
3. Pewsey, A. (2002) Large-sample inference for the general half-normal distribution. Communications in Statistics - Theory & Methods, 31, 1045-1054. PV Data
4. Pewsey, A. (2002) Testing circular symmetry. Canadian Journal of Statistics, 30, 591-600. PV Data
5. Pewsey, A. (2004) Improved likelihood based inference for the general half-normal distribution. Communications in Statistics - Theory & Methods, 33, 197-204. PV Data
6. Pewsey, A. (2004) The large-sample joint distribution of key circular statistics. Metrika, 60, 25-32. PV Data
7. Pewsey, A. (2004) Testing circular symmetry about a known median axis. Journal of Applied Statistics, 31, 575-585. PV Data
8. Pewsey, A. & Jones, M.C. (2005) Discrimination between the von Mises and wrapped normal distributions: just how big does the sample size have to be? Statistics, 39, 81-89. PV
9. Pewsey, A. (2005) The large-sample distribution of the most fundamental of statistical summaries. Journal of Statistical Planning & Inference, 134, 434-444. PV
10. Jones, M.C. & Pewsey, A. (2005) A family of symmetric distributions on the circle. Journal of the American Statistical Association, 100, 1422-1428. PV Data
11. Pewsey, A. (2006) Modelling asymmetrically distributed circular data using the wrapped skew-normal distribution. Environmental & Ecological Statistics, 13, 257-269. PV Data
12. Pewsey, A., Lewis, T. & Jones, M.C. (2007) The wrapped t family of circular distributions. Australian & New Zealand Journal of Statistics, 49, 79-91. PV Data
13. Pewsey, A & González-Farías, G. (2007) Preface to Special Issue on Skew-elliptical Distributions and their Application. Communications in Statistics - Theory & Methods, 36, 1657-1659. PV
14. Mateu-Figueras, G., Puig, P. & Pewsey, A. (2007) Goodness-of-fit tests for the skew-normal distribution when the parameters are estimated from the data. Communications in Statistics - Theory & Methods, 36, 1735-1755. PV
15. Pewsey, A. (2008) The wrapped stable family of distributions as a flexible model for circular data. Computational Statistics & Data Analysis, 52, 1516-1523. PV Data
16. Wiper, M.P., Giron, F.J. & Pewsey, A. (2008) Objective Bayesian inference for the half-normal and half-t distributions. Communications in Statistics - Theory & Methods, 37, 3165-3185. PV Data
17. Abe, T., Pewsey, A. & Shimizu, K. (2009) On Papakonstantinou’s extension of the cardioid distribution. Statistics & Probability Letters, 79, 2138-2147. PV Data
18. Jones, M.C. & Pewsey, A. (2009) Sinh-arcsinh distributions. Biometrika, 96, 761-780. PV TR Data
19. Reed, W. & Pewsey, A. (2009) Two nested families of skew-symmetric circular distributions. Test, 18, 516-528. PV Data
20. Abe, T., Shimizu, K. & Pewsey, A. (2010) Symmetric unimodal models for directional data motivated by inverse stereographic projection. Journal of the Japan Statistical Society, 40, 45-61. PV Data
21. Pewsey, A., Shimizu, K. & de la Cruz, R. (2011) On an extension of the von Mises distribution due to Batschelet. Journal of Applied Statistics, 38, 1073-1085. PV Data
22. Abe, T. & Pewsey, A. (2011) Sine-skewed circular distributions. Statistical Papers, 52, 683-707. PV Data
23. Jones, M.C., Rosco, J.F. & Pewsey, A. (2011) Skewness-invariant measures of kurtosis. The American Statistician, 65, 89-95. PV
24. Abe, T. & Pewsey, A. (2011) Symmetric circular models through duplication and cosine perturbation. Computational Statistics & Data Analysis, 55, 3271-3282. PV Data
25. Rosco, J.F., Jones, M.C. & Pewsey, A. (2011) Skew t distributions via the sinh-arcsinh transformation. Test, 20, 630-652. PV Data
26. Jones, M.C. & Pewsey, A. (2012) Inverse Batschelet distributions for circular data. Biometrics, 68, 183-193. PV SM Data
27. Pewsey, A., Gómez, H.W. & Bolfarine, H. (2012) Likelihood based inference for power distributions. Test, 21, 775-789. PV Data
28. Abe, T., Pewsey, A. & Shimizu, K. (2013) Extending circular distributions through transformation of argument. Annals of the Institute of Statistical Mathematics, 65, 833-858. PV Data
29. Pewsey, A. & Abe, T. (2015) The sinh-arcsinhed logistic family of distributions: properties and inference. Annals of the Institute of Statistical Mathematics, 67, 573-594. PV SM Data
30. Kato, S. & Pewsey, A. (2015) A Möbius transformation-induced distribution on the torus. Biometrika, 102, 359-370. PV SM Data
31. Pewsey, A. (2015) Discussion of "On families of distributions with shape parameters" by M.C. Jones. International Statistical Review, 83, 211-217. PV
32. Jones, M.C., Pewsey, A. & Kato, S. (2015) On a class of circulas: copulas for circular distributions. Annals of the Institute of Statistical Mathematics, 67, 843-862. PV SM Data
33. Rosco, J.F., Pewsey, A. & Jones, M.C. (2015) On Blest's measure of kurtosis adjusted for skewness. Communications in Statistics – Theory & Methods, 44, 3628-3638. PV TR
34. Pewsey, A. & Kato, S. (2016) Parametric bootstrap goodness-of-fit testing for Wehrly–Johnson bivariate circular distributions. Statistics & Computing, 26, 1307-1317. PV
35. Pewsey, A. (2018) Parametric bootstrap edf-based goodness-of-fit testing for sinh-arcsinh distributions. Test, 27, 147-172. PV
36. Jones, M.C. & Pewsey, A. (2019) The sinh‐arcsinh normal distribution. Significance, 16, 6-7. PV
37. Taniguchi, M., Kato, S., Ogata, H. & Pewsey, A. (2020) Models for circular data from time series spectra. Journal of Time Series Analysis, 41, 808-829. DOI: 10.1111/jtsa12549 PV
38. Pewsey, A. & García-Portugués, E. (2021) Recent advances in directional statistics. Test, 30, 1-58. DOI: 10.1007/s11749-021-00759-x PV SM
39. Pewsey, A. & García-Portugués, E. (2021) Rejoinder on: Recent advances in directional statistics. Test, 30, 76-82. DOI: 10.1007/s11749-021-00762-2 PV
40. Ameijeiras-Alonso, J., Ley, C., Pewsey, A. & Verdebout, T. (2021) On optimal tests for circular reflective symmetry about an unknown central direction. Statistical Papers, 62, 1651-1674. DOI: 10.1007/s00362-019-01150-7 SM PV
41. Kato, S., Pewsey, A. & Jones, M.C. (2022) Tractable circula densities from Fourier series. Test, 31, 595-618. DOI: 10.1007/s11749-021-00790-y SM Data+RCode PV (Open Access)
42. Andrzejak, R.G., Espinoso, A., García-Portugués, E., Pewsey, A., Epifanio, J., Leguia, M.G. & Schindler, K. (2023) High expectations on phase locking: Better quantifying the concentration of circular data. Chaos, 33, 091106. PV SM
Papers in Press
In fulfillment of signed copyright agreements, a link below takes you to the version of a paper prior to the production of its proofs. An OV link takes you to the publisher's website where the latest online version of the paper is available, a Data link to data analysed, a TR link to a technical report, and an SM link to supplementary materials.
Pewsey, A. (2025) On Jeffreys's cardioid distribution. Computational Statistics & Data Analysis. Accepted 8th July 2025. OV SM Cardioid.R Azimuths.R
Papers under Review
Recent Talks
1. Pewsey, A. (2012) Sinh-arcsinh Distributions: Their Properties and Applications. XXXIII Congreso Nacional de Estadística e Investigación Operativa. Madrid, Spain.
2. Pewsey, A. & Abe, T. (2013) The Sinh-arcsinhed Logistic Family of Distributions. XXXIV Congreso Nacional de Estadística e Investigación Operativa. Universitat Jaume I, Castellón, Spain.
3. Pewsey, A. (2014) Circulas as Models for Toroidal Data. Advances and Applications in Distribution Theory Workshop. Institute of Statistical Mathematics, Tokyo, Japan.
4. Pewsey, A. (2017) Recent Advances in Directional Statistics. Universidad Carlos III de Madrid, Madrid, Spain.
5. Pewsey, A. (2021) Tractable Circula Densities from Fourier Series. University of Pretoria, South Africa.