Nanophotonics & Plasmonics

1860s Maxwell’s equations have come a long way to give birth the fascinating fields of Nanophotonics and Plasmonics, where the electromagnetic waves are manipulated and investigated in materials structured at the wavelength scale. This course is designed to provide an introduction to the fundamentals and applications of nanophotonics and its sub-field of plasmonics. It will guide the student from Maxwell’s equations of electrodynamics to the frontier of the current, state-of-the-art research. The student will discover its broad and strong impact in near-field microscopy, optical nanoantennas, optical interactions, photonic crystals, photonic/plasmonic waveguides, optical and electron spectroscopies, metamaterials, and non-linear optics.

Lectures

Ch. 1 | Historical Survey
[25:00 min]

0:15 - Definitions
0:56 - History of light & matter
6:48 - History of optics
15:27 - History of E&M
22:37 - Birth of plasmonics

Ch. 2 | Theoretical Foundations (1)
[15:47 min]

0:13 - Electrodynamics
0:19 - Maxwell's equations
5:21 - Conservation of charge
6:10 - Polarization
7:00 - Wave equations
10:42 - Constitutive relations

Ch. 2 | Theoretical Foundations (2)
[24:00 min]

0:32 - Spectral representation
5:18 - Dielectric permittivity
7:34 - Boundary conditions
12:42 - Fresnel coefficients
18:02 - Poynting's theorem

Ch. 2 | Theoretical Foundations (3)
[25:00 min]

0:24 - Dyadic Green functions
4:01 - Spherical waves
8:09 - Reciprocity theorem
13:38 - Evanescent fields
20:43 - FDTD simulations
22:21 - Summary

Ch. 3 | Nanoscale Optical Microscopy(1)
[23:49 min]

0:34 - Optical spectroscopy
2:05 - Paraxial approximation
3:13 - Gaussian beam
7:24 - Angular spectrum
9:19 - Focusing of fields
19:40 - Focusing on substrate

Ch. 3 | Nanoscale Optical Microscopy(2)
[25:18 min]

0:17 - Resolution/Localization
1:18 - Point-spread function
6:29 - Confocal microscopy 11:38 - Localization
13:32 - Near-field microscopy
16:22 - Interaction series
22:24 - NSOM / SNOM
24:52 - Summary

Ch. 4 | Optical Interactions (1)
[24:30 min]

1:14 - Multipole expansion 8:08 - Classical Hamiltonian
12:24 - Radiating electric dipole & Green formalism 15:35 - Near-field / far-field
22:14 - Poynting's theorem

Ch. 4 | Optical Interactions (2)
[23:52 min]

0:30 - Purcell effect
2:30 - Purcell's paper
5:10 - Lifetime & decay rate
10:28 - Dipole-dipole interact.
17:06 - FRET
19:39 - Strong coupling
23:01 - Summary

Ch. 5 | Quantum Emitters
[25:54 min]

1:05 - Fluorescent molecules 11:19 - Quantum dots (QDs)
16:52 - Diamond color centers
19:42 - Absorption cross-section
22:14 - Single molecule
25:15 - Summary

Ch. 6 | Photonic Crystals (1)
[16:57 min]

0:22 - Light scattering process
7:52 - Photonic crystal
10:56 - Photonic crystals in Nature

Ch. 6 | Photonic Crystals (2)
[23:33 min]

0:27 - Photonic bandgap
10:53 - Photonic bands
14:45 - Optical properties 16:34 - Optical spectra vs band structure
20:06 - FDTD simulations

Ch. 6 | Photonic Crystals (3)
[22:24 min]

0:21 - Fabrication of a 3D PC
4:50 - Examples of 3D PC
6:40 - Defects in PC
16:56 - Applications
19:32- Metamaterials
21:46- Summary

Ch. 7 | Numerical Methods
[17:44 min]

3:43 - DDA
5:30 - FDTD
7:26 - BEM
9:24 - FEM
11:31 - Comparison
16:56 - Summary

Ch. 8 | Surface Plasmons (1)
[25:36 min]

2:21 - Discovery of plasmons
4:19 - Electronic band structures in metals
8:37 - Maxwell's equations
11:32 - Drude model
20:25 - Interband transitions
22:13 - Lorentz model

Ch. 8 | Surface Plasmons (2)
[26:16 min]

0:18 - SPP
3:19 - Dispersion relations
7:20 - Dispersion diagrams
10:46 - Otto & Kretschmann
22:11 - Plasmon in EELS
23:05 - Applications

Ch 9 | Localized Surface Plasmons (1)
[22:10 min]

0:52 - LSPR
2:12 - Scattering problem
3:28 - Rayleigh theory
7:08 - Polarizability
13:06 - Optical cross-sections
18:42 - Lycurgus Cup

Ch 9 | Localized Surface Plasmons (2)
[24:05 min]

0:12 - Mie & Gans theories
7:28 - Optical cross-sections
10:54 - Retardation effects
15:14 - Multipoles
22:07 - Numerical methods

Ch 9 | Localized Surface Plasmons (3)
[23:42 min]

0:18 - Shape dependence
1:42 - Plasmon hybridization
7:19 - Plasmonic interactions
8:42 - Spectral tunability
11:32 - Near-field
16:45 - Dielectric screening
18:54 - Image charge
22:47 - Summary

Ch. 10 | Optical Nano-Antennas (1)
[13:40 min]

0:25 - Photophysical effects
3:16 - Antenna principle
6:56 - Antenna properties
10:50 - LSP as nanoantenna

Ch. 10 | Optical Nano-Antennas (2)
[15:06 min]

0:18 - Plasmonic antennas
1:42 - Dipole antenna
3:42 - Yagi-Uda antenna
7:58 - Probes
8:27 - Quantum emitters
13:28 - LSP multipoles
14:19 - Summary

Ch. 11 | Optical Spectroscopies & Sensing (1)
[18:34 min]

3:38 - Optical processes
7:33 - SERS
9:52 - Discovery of SERS
12:52 - Enhancement factor

Ch. 11 | Optical Spectroscopies & Sensing (2)
[18:42 min]

0:25 - SERS substrates
4:46 - Single particle SERS
6:43 - Single molecule SERS
8:45 - TERS
10:26 - LSPR sensing
13:19 - Molecular sensing
15:39 - Urine pregancy test
17:44 - Summary

Ch. 12 | Photonic vs Plasmonic Waveguides (1)
[15:45 min]

0:50 - Optical waveguides
2:28 - Optical fiber
4:56 - Loss, noise, dispersion, nonlinearity
7:38 - Photonic Crystals
9:00 - SPPs
13:47 - Figure of Merit

Ch. 12 | Photonic vs Plasmonic Waveguides (2)
[14:29 min]

0:18 - V-grooves
2:32 - Plasmonic nanowires
6:40 - Nanoparticle chains
12:16 - Hybrid waveguides
13:27 - Key Points Summary

Ch. 13 | Electron Spectroscopies (1)
[17:39 min]

0:17 - Resolution
2:37 - Physical Processes
6:04 - Probing plasmons
8:14 - Electron-matter interaction
10:09 - EELS

Ch. 13 | Electron Spectroscopies (2)
[17:37 min]

0:27 - 3D EELS mapping
3:07 - EELS vs NF vs LDOS
9:31 - Light emission
10:49 - Cathodoluminescence
13:34 - Optical vs CL vs EELS
16:01 - Summary

Ch. 14 | Nonlinear Plasmonics
[21:40 min]

0:23 - Nonlinear processes
5:23 - Anharmonicity
8:31 - Polarization & electric susceptibility
13:10 - Examples
20:05 - Summary

Mathematical Derivations

Ch. 2 | Wave Equations
[12:46 min]

Ch. 2 | Helmholtz Equations
[8:57 min]

Ch. 2 | Reciprocity Theorem
[14:47 min]

Ch. 2 | Green Tensor Symmetry
[9:23 min]

Ch. 4 | Green Tensor
[25:51 min]