Before starting to work in a laboratory, familiarize yourself with the following:
Perform a safety check at the end of each experiment and before leaving the lab. Make sure to:
There are many categories of hazards that might be encountered in a laboratory setting, and situations can change frequently. Even after you have identified and controlled all current risks, it is critical that you remain open to the possibility that new unexpected dangers can arise. Periodically verify that the Laboratory Information Card (LIC) and other hazard warnings are current; advise Environmental Health and Safety whenever changes to the LIC are required.
Carry out weekly inspections on the condition of:
Also, ensure that fire extinguishers and emergency showers are inspected, tested and tagged annually.
Among potential laboratory hazards, be alert for the following:
· Psychosocial conditions that can cause psychological stress
WHMIS legislation applies to all McGill staff and students who work in areas where hazardous materials, referred to in WHMIS legislation as "controlled products", are used. The purpose of this legislation is to ensure that people who handle these controlled products have access to the information that they need in order to work safely. WHMIS requires that this information be conveyed via labels, material safety data sheets (MSDS) and training.
Below you will find a summary of the type of information that is covered by labels, MSDSs and training. For more specific details, consult the "McGill WHMIS Handbook", available from Environmental Health and Safety(local 4563).
Labels for hazardous materials must alert people to the dangers of the product and basic safety precautions.
MSDSs provide more details than the labels. They are technical bulletins that provide chemical, physical, and toxicological information about each controlled product, as well as information on precautionary and emergency procedures. They must be readily accessible to anyone who works with, or who may otherwise be exposed to, controlled products.
Training provides more detailed instruction on the specific procedures necessary to carry out work safely. Basic training, referred to as core training, provides instruction on the content, purpose and interpretation of information found on labels and in MSDSs for controlled products.
Hazard-specific or job-specific training refers to instruction in the procedures for the safe handling and storage of the controlled products that are unique to each laboratory. Hazard-specific training also covers spill or leak remediation; waste disposal; and basic first aid instructions.
The classes of controlled chemical products and their corresponding symbols or pictograms, as well as general characteristics and handling precautions are outlined in table 1.
Environmental Health and Safety.
Despite the limitations of using toxicity data from animal studies to predict the effects on humans, LD50 and LC50 values often comprise a large part of the available toxicity information, and form the bases for many standards, guidelines and regulations.
LD50 (Lethal Dose50) is the amount of a substance that, when administered by a defined route of entry (e.g. oral or dermal) over a specified period of time, is expected to cause the death of 50 per cent of a defined animal population. The LD50 is usually expressed as milligrams or grams of test substance per kilogram of animal body weight (mg/kg or g/kg).
LC50 (Lethal Concentration50) is the amount of a substance in air that, when given by inhalation over a specified period of time, is expected to cause the death in 50 per cent of a defined animal population. Some LC50 values are determined by administration of test substances to aquatic life in water. The
LC50 is expressed as parts of test substance per million parts of air (PPM) for gases and vapours, or as milligrams per litre or cubic metre of air (mg/L or mg/m3) for dusts, mists and fumes.
When assessing the hazards of materials used in the laboratory, it is important to remember that substances with lower LD50 or LC50 values are more toxic that those with higher values.
An exposure limit is the maximum limit of exposure to an air contaminant. The threshold limit value (TLV) or permissible exposure limit (PEL) can be expressed as the following:
It should be noted that most exposure limits are based on industrial experiences and are not entirely relevant to the laboratory environment. Good laboratory practices and well-designed ventilation systems serve to maintain air concentrations well below these limits.
The flash point is the lowest temperature at which a liquid produces enough vapour to ignite in the presence of a source of ignition. The lower the flash point, the greater the risk of fire. Many common laboratory solvents (e.g., acetone, benzene, diethyl ether, methanol) have flash points that are below room temperature.
The ignition or autoignition temperature is the temperature at which a material will ignite, even in the absence of an ignition source; a spark is not necessary for ignition when a flammable vapour reaches its autoignition temperature. The lower the ignition temperature, the greater the potential for a fire started by typical laboratory equipment.
Flammable limits or explosive limits define the range of concentrations of a material in air that will burn or explode in the presence of an ignition source such as a spark or flame. Explosive limits are usually expressed as the percent by volume of the material in air:
Table 1 - Safe handling of controlled products. Summary of general characteristics and procedures for handling and storage of WHMIS-controlled products.
Table 2 - Flash points, lower explosive limits and exposure limits (8-hour time-weighted averages) of several flammable or combustible laboratory solvents.
* NIOSH Pocket Guide to Chemical Hazards, 1999
Chemicals can gain entry into the body by:
Flammable and combustible liquids, solids or gases will ignite when exposed to heat, sparks or flame. Flammable materials burn readily at room temperature, while combustible materials must be heated before they will burn. Flammable liquids or their vapours are the most common fire hazards in laboratories. Refer to Section 5.4 ("Preventing Fires") for specific details on the safe handling of flammable chemicals in the laboratory
Oxidizers provide oxidizing elements such as oxygen or chlorine, and are capable of igniting flammable and combustible material even in an oxygen-deficient atmosphere (Refer to Section 5.1, "The Fire Triangle"). Oxidizing chemicals can increase the speed and intensity of a fire by adding to the oxygen supply, causing materials that would normally not burn to ignite and burn rapidly. Oxidizers can also:
Precautions to follow when using and storing oxidizers in the laboratory include the following:
Follow these precautions when working with dangerously reactive chemicals:
Corrosives are materials, such as acids and bases (caustics, alkalis) which can damage body tissues as a result of splashing, inhalation or ingestion. Also:
Precautions for handling corrosive materials include:
Laboratory heads are responsible for predetermining procedures for response to the types of spill situations that may be anticipated for their operations. Individuals requiring assistance in preparing spill response plans should contact Environmental Health and Safety(local 4563).
In instances where more extensive equipment or technical assistance is needed, backup can be provided by other internal resources. Communications are handled through the emergency telephone number (Downtown Campus local 3000, or Macdonald Campus local 7777).
All laboratories housing hazardous materials are required to provide means of reaching contact people who may be summoned in the event of emergencies involving their laboratory, especially for after-hours situations. This may involve posting the relevant telephone number(s) and/or providing them to the Security Services, who operate the emergency telephone number.
Building Directors are also required to provide to the Security Services telephone numbers where they, or alternate contact persons, may be reached during after-hours crises.
The following factors are to be considered when developing spill response procedures:
These guidelines should be followed when initially responding to a spill situation:
This section describes how to clean up some of the chemical spills that may occur in the laboratory. Refer to Section 6.3.1, "Chemical Waste", for details on how to dispose of the absorbed chemical.
Small spills can be cleaned up mechanically with a dustpan and brush. Larger spills should be cleaned up using a HEPA (high-efficiency articulate) filter vacuum. For spills containing fine dusts, an air-purifying respirator with dust filters is recommended, as are gloves, protective goggles, and a lab coat.
Avoid disturbing such solids (e.g. asbestos) which may release toxic dusts. Wet the material thoroughly, then place it in a plastic bag and label it appropriately. If wet removal is not possible, a vacuum equipped with a HEPA (High Efficiency Particulate Air) filter is required.
In the event of the release of a corrosive gas (e.g. chlorine) or gases that are absorbed through the skin (e.g. hydrogen cyanide), a complete chemical resistant suit and a self-contained breathing apparatus are required. There is no practical means of absorbing or neutralizing a gas - the leak must be corrected at the source.
If a small amount of mercury is spilled (e.g. broken thermometer), use an aspirator bulb or a mercury sponge to pick up droplets, place the mercury in a container, cover with water, seal it, and label the bottle appropriately. To clean up the residual micro-droplets that may have worked into cracks and other hard-to-clean areas, sprinkle sulphur powder or other commercially available product for mercury decontamination. Leave the material for several hours and sweep up solid into a plastic bag, seal it and label it appropriately.
Contact the Environmental Health and Safety(local 4563) for monitoring of mercury air concentrations.
If a large spill of mercury is involved, the area should be closed off, and a mercury respirator worn during the clean-up. A mercury vacuum is available from the Waste Management Program (local 5066) for large mercury spills.
It is not within the scope of this manual to list procedures for all possible categories of chemicals. For further information on responses to other categories consult the material safety data sheet or contact Environmental Health and Safety (local 4563).
Guidelines for storage of hazardous chemicals include the following:
Flammable chemicals should be stored inside flammable liquid storage cabinets. Only those flammables in use for the day should be outside the cabinet. Guidelines for cabinet use include:
The storage scheme outlined in Section 4.4 below ("Chemical Segregation") may not suffice to prevent mixing of incompatible chemicals. Certain hazardous combinations can occur even between chemicals of the same classifications. Table 3 shows common examples of incompatible combinations:
Table 3 - Examples of incompatible combinations of some commonly used chemicals.
For more detailed information refer to the reactivity section of the Material Safety Data Sheet or a reference manual on reactive chemical hazards.
Table 4 - Suggested Segregation for Chemical Storage
Many chemicals, most notably ethers (e.g., THF, dioxane, diethyl and isopropyl ether), are susceptible to decomposition resulting in explosive products. Ethers, liquid paraffins, and olefins form peroxides on exposure to air and light. Since most of these products have been packaged in an air atmosphere, peroxides can form even if the containers have not been opened.
The following are common examples of compounds prone to peroxide formation:
The label and Material Safety Data Sheet (MSDS) will also indicate if a chemical is unstable.
Many chemicals are susceptible to rapid decomposition or explosion when subjected to forces such as being struck, vibrated, agitated or heated. Some become increasingly shock sensitive with age. Picric acid becomes shock sensitive and explosive if it dries out.
The following are atomic groupings that are associated with the possibility of explosion:
The following are common examples of materials known to be shock-sensitive and explosive:
Laboratory fires can by caused by bunsen burners, runaway chemical reactions, electrical heating units, failure of unattended or defective equipment, or overloaded electrical circuits. Familiarize yourself with the operation of the fire extinguishers and the location of pull stations, emergency exits and evacuation routes where you work. In the event that the general alarm is sounded use the evacuation routes established for your area and follow the instructions of the Evacuation Monitors. Once outside of the building, move away from the doors to enable others to exit.
Fire cannot occur without an ignition source, fuel and an oxidizing atmosphere (usually air), the three elements that comprise what is called the "fire triangle":
Fire will not be initiated if any one of these elements is absent, and will not be sustained if one of these elements is removed. This concept is useful in understanding prevention and control of fires. For example, the coexistence of flammable vapours and ignition sources should be avoided, but when flammable vapours cannot be controlled elimination of ignition sources is essential.
The National Fire Protection Association (NFPA) has defined four classes of fire, according to the type of fuel involved. These are:
Fire extinguishers are rated as A, B, C or D (or combinations of A, B, C and D) for use against the different classes of fires. Familiarize yourself with the fire class ratings of the extinguishers in your work area so that you will know what types of fire you can attempt to extinguish with them.
Learn how to use the extinguisher in your lab, as there will be no time to read instructions during an emergency. Attempt to fight small fires only, and only if there is an escape route behind you. Remember to have the extinguisher recharged after every use: inform Building Services at local 4560 (local 7828 at Macdonald Campus). If you do fight a fire, remember the acronym "PASS" when using the extinguisher:
5.4 Preventing fires
Use the following precautions when working with or using flammable chemicals in a laboratory; keep in mind that these precautions also apply to flammable chemical waste.
In the event that the general alarm is sounded, follow the evacuation routes established for your area; do not use the elevators. Follow the instructions of the Evacuation Monitors. Once outside the building, move away from the doors to allow others to exit
In order to minimize the amount of hazardous waste presented for disposal, it is important to follow these guidelines:
6.3.1.1 Organic solvents and oils
6.3.1.3 Chemicals of unknown composition
6.3.1.4 Peroxide-forming (e.g. ether) and explosive (e.g. dry picric acid) chemicals
6.3.1.5. Corrosives (acids and bases)
6.3.2.1 Animal carcasses
6.3.2.2 Infectious laboratory waste
6.3.2.3 Biohazardous sharps
Refer to Section 6.3.3.1 below for further details.
6.3.2.4 Blood and blood-contaminated materials
6.3.3.1 Definition of Sharps
Sharps are defined as any material that can penetrate plastic bags: examples include syringe needles, scalpel blades, glass and plastic pipettes, disposable pipette tips, etc.
6.3.3.1.1 Contaminated sharps
6.3.3.1.2 Non-contaminated sharps
6.3.3.2 Broken glassware (uncontaminated)
6.3.3.3 Empty chemical reagent bottles
6.3.4.1 Solid waste (except sealed sources)
6.3.4.2 Sealed and encapsulated sources
6.3.4.3 Liquid scintillation vials
6.3.4.4 Liquid radioactive waste
General ventilation, also called dilution ventilation, involves dilution of inside air with fresh outside air, and is used to:
General ventilation systems comprise an air supply and an air exhaust. The air may be supplied via a central HVAC (Heating, Ventilation and Air Conditioning) system or, especially in older buildings, via openable windows. Laboratory air may be exhausted through either local exhaust devices or air returns connected to the HVAC system.
Local exhaust ventilation systems capture and discharge air contaminants (biological, chemical, radioactive) or heat from points of release. Common local exhaust ventilation devices found in laboratories include:
Chemical fume hoods are enclosed units with a sliding sash for opening or closing the hood. They are able to capture and exhaust even heavy vapours, and are preferred for all laboratory procedures that require manual handling of hazardous chemical material. Refer to Section 7.4 below for information on the safe use of chemical fume hoods.
Canopy hoods are designed to capture heat from processes or equipment, such as atomic absorption spectrophotometers or autoclaves; a canopy or bonnet is suspended over a process and connected to an exhaust vent. The following limitations make canopy hoods poor substitutes for chemical fume hoods, because they:
Slotted hoods, or benches, have one or more narrow horizontal openings, or slots, at the back of the work surface; the slots are connected to exhaust ducting. These special purpose hoods are used for work with chemicals of low to moderate toxicity only, such as developing black and white photographs.
Biological safety cabinets are for use with biological material; depending on the cabinet class, they provide protection of the environment, user and/or product. They are not recommended for use with hazardous chemicals because most models recirculate air into the laboratory, and because the HEPA filter that is integral to the protective function can be damaged by some chemicals. Biological safety cabinets are described in more detail in the McGill Laboratory Biosafety Manual.
Direct connections provide direct exhausting of contaminants to the outdoors and are used for venting:
By regulation, more air is exhausted from a laboratory than is supplied to it, resulting in a net negative pressure (vacuum) in the laboratory. Negative pressure draws air into the laboratory from surrounding areas, and serves to prevent airborne hazardous chemicals, radiation or infectious microorganisms from spreading outside the laboratory in the event of an accidental release inside the laboratory. Balancing of laboratory ventilation must take into consideration the amount of air exhausted by local ventilation devices such as fume hoods. Modern laboratories do not have operable windows, as opening of windows tends to pressurize a room, pushing air from the laboratory into adjacent non-laboratory areas.
Fume hoods properly used and maintained, will render substantial protection, provided the user is aware of its capabilities and limitations. The performance standard for fume hoods is the delivery of a minimum face velocity of 100 linear feet per minute at half sash height. An anemometer for determining a fumehood's face velocity is available from Environmental Health and Safety. To ensure your fume hood provides the highest degree of protection observe the following guidelines:
Compressed gases are hazardous due to the high pressure inside cylinders. Knocking over an unsecured, uncapped cylinder of compressed gas can break the cylinder valve; the resulting rapid escape of high pressure gas can turn a cylinder into an uncontrolled rocket or pinwheel, causing serious injury and damage. Poorly controlled release of compressed gas in the laboratory can burst reaction vessels, cause leaks in equipment and hoses or result in runaway chemical reactions. Compressed gases may also have flammable, oxidizing, dangerously reactive, corrosive or toxic properties. Inert gases such as nitrogen, argon, helium and neon can displace air, reducing oxygen levels in poorly ventilated areas and causing asphyxiation.
Cryogenics are very low temperature materials such as dry ice (solid CO2) and liquefied air or gases like nitrogen, oxygen, helium, argon and neon. The following hazards are associated with the use of cryogenics:
The following are precautions for handling cryogenics:
Pressure differences between equipment and the atmosphere result in many lab accidents. Glass vessels under vacuum or pressure can implode or explode, resulting in cuts from projectiles and splashes to the skin and eyes. Glass can rupture even under small pressure differences. Rapid temperature changes, such as those that occur when removing containers from liquid cryogenics, can lead to pressure differences, as can carrying out chemical reactions inside sealed containers.
The hazards associated with pressure work can be reduced by:
Ergonomics is concerned with how the workplace "fits" the worker. Performing certain work tasks without regard for ergonomic principles can result in:
Factors that can increase the risk of musculoskeletal injury are:
In a laboratory setting, look for the following when addressing ergonomic concerns:
When handling glass rods or tubes:
Whenever lab equipment is purchased, preference should be given to equipment that
Every effort should be made to prevent equipment from becoming contaminated. To reduce the likelihood of equipment malfunction that could result in leakage, spill or unnecessary generation of aerosolized pathogens:
The following sections outline some of the precautions and procedures to be observed with some commonly used laboratory equipment.
Improperly used or maintained centrifuges can present significant hazards to users. Failed mechanical parts can result in release of flying objects, hazardous chemicals and biohazardous aerosols. The high speed spins generated by centrifuges can create large amounts of aerosol if a spill, leak or tube breakage occurs. To avoid contaminating your centrifuge:
When using high-speed or ultra centrifuges, additional practices should include:
Heating baths keep immersed materials immersed at a constant temperature. They may be filled with a variety of materials, depending on the bath temperature required; they may contain water, mineral oil, glycerin, paraffin or silicone oils, with bath temperatures ranging up to 300oC. The following precautions are appropriate for heating baths:
When used with infectious agents, mixing equipment such as shakers, blenders, sonicators, grinders and homogenizers can release significant amounts of hazardous aerosols, and should be operated inside a biological safety cabinet whenever possible. Equipment such as blenders and stirrers can also produce large amounts of flammable vapours. The hazards associated with this type of equipment can be minimized by:
Laboratory ovens are useful for baking or curing material, off-gassing, dehydrating samples and drying glassware.
The following instructions for safe use of analytical equipment are general guidelines; consult the user's manual for more detailed information on the specific hazards:
Sample preparation for atomic absorption procedures often require handling of flammable, toxic and corrosive products. Familiarize yourself with the physical, chemical and toxicological properties of these materials and follow the recommended safety precautions. Atomic absorption equipment must be adequately vented, as toxic gases, fumes and vapours are emitted during operation. Other recommendations to follow when carrying out atomic absorption analysis are:
Mass spectrometry requires the handling of compressed gases and flammable and toxic chemicals. Consult MSDSs for products before using them. Specific precautions for working with the mass spectrometer include:
Gas chromatography requires handling compressed gases (nitrogen, hydrogen, argon, helium), and flammable and toxic chemicals. Consult product MSDSs before using such hazardous products. Specific precautions for working with gas chromatographs include:
The superconducting magnet of NMR equipment produces strong magnetic and electromagnetic fields that can interfere with the function of cardiac pacemakers. Users of pacemakers and other implanted ferromagnetic medical devices are advised to consult with their physician, the pacemaker's manual and pacemaker manufacturer before entering facilities which house NMR equipment. Precautions for work with NMR include the following:
HPLC procedures may require handling of compressed gas (helium) and flammable and toxic chemicals. Familiarize yourself with the hazardous properties of these products, as well as recommended precautionary measures, by referring to MSDSs.
LC/MS requires the handling of compressed nitrogen and flammable and toxic chemicals. Consult product MSDSs before using them. Specific precautions for working with LC/MS equipment include:
The University’s policies regarding eye and face protection (Section 11.1) and protective clothing (Section 11.2) are outlined below. Note that hazardous materials include those defined by WHMIS legislation as "controlled products", as well as open radioactive sources as defined by Canadian Nuclear Safety legislation.
All students, staff, faculty and visitors must wear appropriate eye and/or facial protection in the following:
Instructions for selection and use of protective eyewear are as follows:
Appropriate protective clothing (e.g., lab coats, aprons, coveralls) is required in all experimental areas where hazardous materials are handled.
Instructions for selection and use of protective laboratory clothing are as follows:
In the laboratory, gloves are used for protection from radiation, chemical products, biohazardous material and physical hazards such as abrasion, tearing, puncture and exposure to temperature extremes
Natural latex is derived from the sap of the rubber tree and contains rubber polymers, carbohydrates, lipids, phospholipids and proteins. During the manufacturing process additional chemical agents are added to impart elasticity, flexibility and durability to the latex. Because of these properties, and because of their high tactile strength and low cost, latex gloves are used for many laboratory procedures. Unfortunately, for some people, wearing latex gloves can cause skin reactions; these can be either irritant or allergic in nature, and can be caused by:
Frequent handwashing, as well as residues from scrubs, soaps, cleaning agents and disinfectants may further irritate the skin.
Using one of the following alternatives may reduce the risk of skin problems associated with the use of latex rubber gloves:
Occurrences of skin problems (e.g., rash, itching, peeling, red, blistering skin or dry flaking skin with cracks and sores) that seem to be associated with the wearing of latex gloves should be reported to a physician when symptoms first appear.
Base selection of glove material on:
Table 5 - Recommended glove materials for a variety of laboratory hazards
Trademark names were included because the reader is likely to encounter them in the literature: consult laboratory or safety equipment suppliers, or the manufacturer, for more information on brand name gloves. Gloves not listed here may also be suitable; refer to the MSDS, glove manufacturer or permeation chart. The section on electricity is included for information purposes only, as all electrical work must be done by licensed electricians.
No single glove material is resistant to all chemicals, nor will most gloves remain resistant to a specific chemical for longer than a few hours. Determine which gloves will provide an acceptable degree of resistance by consulting the MSDS for the product, contacting glove manufacturers or by referring to a compatibility chart or table for permeation data. These resources may use the following terms:
Guidelines for glove use include the following:
Respirators should be used only in emergency situations (e.g. hazardous spills or leaks) or when other measures, such as ventilation, cannot adequately control exposures.
There are two classes of respirators: air-purifying and supplied-air. The latter supply clean air from a compressed air tank or through an air line outside the work area, and are used in oxygen-deficient atmospheres or when gases or vapours with poor warning properties are present in dangerous concentrations.
Air-purifying respirators are suitable for many laboratory applications and remove particulates (dusts, mists, metal fumes etc.) or gases and vapours from the surrounding air.
Follow proper procedures for selecting and using respiratory protective equipment. Correct use of a respirator is as vital as choosing the right respirator. An effective program for respiratory protection should include the following:
Know how to handle emergency situations before they occur:
The emergency first aid procedures described below should be followed by a consultation with a physician for medical treatment.
In the laboratory, thermal burns may be caused by intense heat, flames, molten metal, steam, etc. Corrosive liquids or solids such as bases and acids can cause chemical burns; first aid treatment for chemical burns is described in Section 12.1.4 below. In electrical burns, electrical current passing through the body generates heat.
First aid treatment of skin burns encompasses the following:
Burns to the eyes may be caused by chemical substances, heat (hot liquids, steam, open flames, molten metal, etc.), or radiation from welding procedures, laboratory lamps and lasers. Burns caused by ultraviolet, visible or near-infrared radiation may not produce symptoms until 6-8 hours after exposure. First aid procedures for chemical burns to the eyes are described in Section 12.1.4 below. General first aid procedures for thermal and radiation burns to the eyes are as follows:
First aid treatment for minor scrapes, scratches, cuts, lacerations or puncture wounds include the following:
Treat bleeding needle-related injuries as described in Section 12.1.2 above. Consult a physician immediately, as post-exposure prophylaxis or immunization may be required.
For splashes to the skin:
For splashes to the eyes:
As described in section 3.1, toxic substances can enter and poison the body by inhalation, absorption through the skin, ingestion or injection. When assisting a victim of poisoning:
The immediate response depends on the size of the fire. Laboratory personnel should attempt to extinguish a fire only if it is clearly safe to do so (Refer to Section 5.3, "Fire Extinguishers").
All members of the University should familiarize themselves with the locations of the fire alarms and evacuation routes in the areas that they occupy. Anyone discovering smoke, strong smell of burning or smell of an unusual nature, should immediately:
If your clothing should catch fire, it is important not to run, as this would provided additional air to support the flames. Remember the "Stop, Drop and Roll" rule:
As soon as the flames are extinguished, go to the nearest emergency shower to cool burned areas with copious amounts of water. If someone else is on fire:
In the event of a spill of a hazardous (volatile, toxic, corrosive, reactive or flammable) chemical, the following procedures should be followed:
Note: For more detailed information on spill clean-up action, Refer to Section 3.6.3 ("Guidelines for Specific Types of Spills") of this manual.
Have the natural gas valves closed if you don't use gas. If you do use gas, and detect a natural gas smell:
*NFPA 6.2.3.2: Class 1A and Class 1B liquids shall be permitted to be stored in glass containers of not more than 5L (1.3 gal) capacity, if the required liquid purity (such as ACS analytical reagent grade or higer) would be affected by storage in metal containers or if the liquid can cause excessive corrosion of the metal container.
The responsibility for the management of laboratory safety and adherence to safe lab practices rests within units and departments. All personnel, including directors, supervisors, employees and students have a duty to fulfill their obligations with respect to maintaining a healthful and safe work environment.
Laboratory Directors are responsible to:
Laboratory personnel are responsible to:
Visitors, contractors and non-laboratory personnel are responsible to:
Adopted by the University Laboratory Safety Committee, on November 18, 2004. Amended on June 28, 2006