VCE Environmental Science enables students to explore the interrelationships between Earth’s four systems. Students examine how past and current human activities affect the environment and how future challenges can be managed sustainably. In undertaking this study, students gain an understanding of the complexity of environmental decision-making, and how innovative responses to environmental challenges can reduce pressure on Earth’s natural resources and ecosystem services.
In VCE Environmental Science, students develop a range of scientific inquiry skills including practical experimentation, research and analytical skills, problem-solving skills including critical and creative thinking, and communication skills. Students pose questions, formulate hypotheses, conduct investigations, and analyse and critically interpret qualitative and quantitative data. They assess the limitations of data, evaluate methodologies and results, justify their conclusions, make recommendations and communicate their findings. Students investigate and evaluate environment-related issues, alternative proposals and responses to challenges by considering both short- and long-term consequences for the individual, the environment and society.
VCE Environmental Science provides direct pathways to a range of careers related to atmospheric sciences, ecology, environmental chemistry and geosciences. The interdisciplinary nature of the study leads to pathways including, but not limited to, architecture, environmental law, engineering, environmental consultancy, environmental advocacy, government policy development, industrial management, landscape design, regional and urban planning, and teaching and research. Environmental scientists also work in cross-disciplinary solutions-oriented areas such as coastal management, climate risk management and disaster risk management.
The study is made up of four units, structured under a series of curriculum-framing questions that reflect the inquiry nature of the discipline.
Unit 1: How are Earth’s dynamic systems interconnected to support life?
Unit 2: What affects Earth’s capacity to sustain life?
Unit 3: How can biodiversity and development be sustained?
Unit 4: How can climate change and energy impacts be managed?
Each unit deals with specific content contained in areas of study and is designed to enable students to achieve a set of outcomes for that unit. Each outcome is described in terms of key knowledge and is complemented by a set of key science skills.
There are no prerequisites for entry to Units 1, 2 and 3. Students must undertake Unit 3 and Unit 4 as a sequence. Units 1 to 4 are designed to a standard equivalent to the final two years of secondary education. All VCE studies are benchmarked against comparable national and international curriculum.
Unit 1: How are Earth’s dynamic systems interconnected to support life?
Earth has been dramatically altered over the past 4.5 billion years by naturally occurring climate swings, volcanic activity, drifting continents and other transformative processes. Human activities and lifestyles have an impact on, and are impacted by, Earth’s systems both directly and indirectly, and with both immediate and far-reaching effects.
In this unit students examine the processes and interactions occurring within and between Earth’s four interrelated systems – the atmosphere, biosphere, hydrosphere and lithosphere. They focus on how ecosystem functioning can influence many local, regional and global environmental conditions such as plant productivity, soil fertility, water quality and air quality. Students explore how changes that have taken place throughout geological and recent history are fundamental to predicting the likely impact of future changes. They consider a variety of influencing factors in achieving a solutions-focused approach to responsible management of challenges related to natural and human-induced environmental change.
Unit 2: What affects Earth’s capacity to sustain life?
A sustainable food and water system with a minimal environmental footprint is necessary to secure the food and water supplies that can meet the demands of current and future populations of Earth’s species, including humans. Both natural and human activities can generate pollution that can cause adverse effects across Earth’s four interrelated systems – the atmosphere, biosphere, hydrosphere and lithosphere – and consequently affect food and water security. Pollution can make air and water resources hazardous for plants and animals. It can directly harm soil microorganisms and larger soil-dwelling organisms, with consequences for soil biodiversity, as well as impacting on food security by impairing plant function and reducing food yields.
In this unit students consider pollution as well as food and water security as complex and systemic environmental challenges facing current and future generations. They examine the characteristics, impacts, assessment and management of a range of pollutants that are emitted or discharged into Earth’s air, soil, water and biological systems, and explore factors that limit and enable the sustainable supply of adequate and affordable food and water.
Unit 3: How can biodiversity and development be sustained?
In this unit students focus on environmental management through the application of sustainability principles. They explore the value of the biosphere to all living things by examining the concept of biodiversity and the ecosystem services important for human health and well-being. They analyse the processes that threaten biodiversity and evaluate biodiversity management strategies for a selected threatened endemic animal or plant species. Students use a selected environmental science case study with reference to sustainability principles and environmental management strategies to explore management from an Earth systems perspective, including impacts on the atmosphere, biosphere, hydrosphere and lithosphere.
Unit 4: How can climate change and the impacts of human energy use be managed?
In this unit students explore different factors that contribute to the variability of Earth’s climate and that can affect living things, human society and the environment at local, regional and global scales. Students compare sources, availability, reliability and efficiencies of renewable and non-renewable energy resources in order to evaluate the suitability and consequences of their use in terms of upholding sustainability principles. They analyse various factors that are involved in responsible environmental decision-making and consider how science can be used to inform the management of climate change and the impacts of energy production and use.
Measurement of environmental indicators often involves uncertainty. Students develop skills in data interpretation, extrapolation and interpolation and test predictions. They recognise the limitations of contradictory, provisional and incomplete data derived from observations and models. They explore relationships and patterns in data, and make judgments about accuracy and validity of evidence.
Satisfactory completion
The award of satisfactory completion for a unit is based on whether the student has demonstrated the set of outcomes specified for the unit.
Practical work is a central component of learning and assessment and may include activities such as laboratory experiments, fieldwork, simulations, modelling and other direct experiences
Levels of achievement
Satisfactory completion
The award of satisfactory completion for a unit is based on a decision that the student has demonstrated achievement of the set of outcomes specified for the unit. This decision will be based on the teacher’s assessment of the student’s performance on assessment tasks designated for the unit.
Units 1 and 2
Procedures for the assessment of levels of achievement in Units 1 and 2 are a matter for school decision.
Units 3 and 4
The Victorian Curriculum and Assessment Authority will supervise the assessment of all students undertaking Units 3 and 4. In the study of VCE Environmental Science the student’s level of achievement will be determined by School-assessed Coursework as specified in the VCE Environmental Science study design and external assessment. Percentage contributions to the study score in VCE Environmental Science are as follows:
Unit 3 School-assessed Coursework: 20 per cent
Unit 4 School-assessed Coursework: 30 per cent
End-of-year examination: 50 per cent.