• P. Gronowicz, G. Gomolka, D. Pysz, R. Buczynski, and M. Nikodem, “Demonstration of a compact reflective gas sensing probe based on negative-curvature hollow-core fiber,” Applied Optics 64, 5624-5631 (2025). https://doi.org/10.1364/AO.560251
• P. Gronowicz, G. Gomolka, D. Pysz, R. Buczynski, and M. Nikodem, “Demonstration of a compact reflective gas sensing probe based on negative-curvature hollow-core fiber,” Applied Optics 64, 5624-5631 (2025). https://doi.org/10.1364/AO.560251
• G. Gomółka, M. Nikodem, “Gas leak detection by measuring dilution of ambient air with differential optical dispersion spectroscopy of oxygen,” Optics Express 32, 48847-48857 (2024). https://doi.org/10.1364/OE.543869
• G. Gomółka, M. Nikodem, “Gas leak detection by measuring dilution of ambient air with differential optical dispersion spectroscopy of oxygen,” Optics Express 32, 48847-48857 (2024). https://doi.org/10.1364/OE.543869
• G. Gomółka, A. Filipkowski, D. Pysz, R. Buczyński, M. Nikodem, “Fast response multi-segment anti-resonant hollow-core fiber methane sensor at 1687 nm,” Optical Fiber Technology 84, 103744 (2024). https://doi.org/10.1016/j.yofte.2024.103744
• G. Gomółka, A. Filipkowski, D. Pysz, R. Buczyński, M. Nikodem, “Fast response multi-segment anti-resonant hollow-core fiber methane sensor at 1687 nm,” Optical Fiber Technology 84, 103744 (2024). https://doi.org/10.1016/j.yofte.2024.103744
• G. Gomółka, P. Gronowicz, A. Filipkowski, R. Buczyński, M. Nikodem, “Suppression of Optical Fringes in Gas Spectroscopy Inside Anti-Resonant Hollow-Core Fibers by Fiber Bending,” IEEE Journal of Selected Topics in Quantum Electronics 30, 5600508 (2024). https://doi.org/10.1109/JSTQE.2024.3367272
• G. Gomółka, P. Gronowicz, A. Filipkowski, R. Buczyński, M. Nikodem, “Suppression of Optical Fringes in Gas Spectroscopy Inside Anti-Resonant Hollow-Core Fibers by Fiber Bending,” IEEE Journal of Selected Topics in Quantum Electronics 30, 5600508 (2024). https://doi.org/10.1109/JSTQE.2024.3367272
• G. Gomółka, D. Pysz, R. Buczyński, M. Nikodem, "Wavelength modulation spectroscopy of oxygen inside anti-resonant hollow-core fiber-based gas cell," Optics and Laser Technology 170, 110323 (2024) https://doi.org/10.1016/j.optlastec.2023.110323
• G. Gomółka, D. Pysz, R. Buczyński, M. Nikodem, "Wavelength modulation spectroscopy of oxygen inside anti-resonant hollow-core fiber-based gas cell," Optics and Laser Technology 170, 110323 (2024) https://doi.org/10.1016/j.optlastec.2023.110323
• G. Gomółka, G. Stępniewski, D. Pysz, R. Buczyński, M. Klimczak, and M. Nikodem, "Highly sensitive methane detection using a mid-infrared interband cascade laser and an anti-resonant hollow-core fiber," Optics Express 31, 3685-3697 (2023) https://doi.org/10.1364/OE.479963
• G. Gomółka, G. Stępniewski, D. Pysz, R. Buczyński, M. Klimczak, and M. Nikodem, "Highly sensitive methane detection using a mid-infrared interband cascade laser and an anti-resonant hollow-core fiber," Optics Express 31, 3685-3697 (2023) https://doi.org/10.1364/OE.479963
• G. Gomółka, D. Pysz, R. Buczyński, and M. Nikodem, "Dual-Pass Hollow-Core Fiber Gas Spectroscopy Using a Reflective Configuration With Heterodyne-Based Signal Detection," Journal of Lightwave Technology 41, 6094-6101 (2023) https://doi.org/10.1109/JLT.2023.3272308
• G. Gomółka, D. Pysz, R. Buczyński, and M. Nikodem, "Dual-Pass Hollow-Core Fiber Gas Spectroscopy Using a Reflective Configuration With Heterodyne-Based Signal Detection," Journal of Lightwave Technology 41, 6094-6101 (2023) https://doi.org/10.1109/JLT.2023.3272308
• M. Zatorska, G. Gomółka, and M. Nikodem, "Near-infrared quartz-enhanced photoacoustic spectroscopy system for ppb-level methane detection," Optics Continuum 2, 266-273 (2023) https://doi.org/10.1364/OPTCON.477782
• M. Zatorska, G. Gomółka, and M. Nikodem, "Near-infrared quartz-enhanced photoacoustic spectroscopy system for ppb-level methane detection," Optics Continuum 2, 266-273 (2023) https://doi.org/10.1364/OPTCON.477782
• P. ChmielowskI and M. Nikodem, "Widely tunable continuous-wave fiber laser in the 1.55-1.8 µm wavelength region," Optics Express 30, 42300-42307 (2022) https://doi.org/10.1364/OE.470378
• P. ChmielowskI and M. Nikodem, "Widely tunable continuous-wave fiber laser in the 1.55-1.8 µm wavelength region," Optics Express 30, 42300-42307 (2022) https://doi.org/10.1364/OE.470378
• G. Gomolka, M. Krajewska, A. Khegai, S. Alyshev, A. Lobanov, S. Firstov, D. Pysz, G. Stepniewski, R. Buczynski, M. Klimczak, and M. Nikodem, "Heterodyne photothermal spectroscopy of methane near 1651 nm inside hollow-core fiber using a bismuth-doped fiber amplifier," Applied Optics 60, C84-C91 (2021) https://doi.org/10.1364/AO.420044
• G. Gomolka, M. Krajewska, A. Khegai, S. Alyshev, A. Lobanov, S. Firstov, D. Pysz, G. Stepniewski, R. Buczynski, M. Klimczak, and M. Nikodem, "Heterodyne photothermal spectroscopy of methane near 1651 nm inside hollow-core fiber using a bismuth-doped fiber amplifier," Applied Optics 60, C84-C91 (2021) https://doi.org/10.1364/AO.420044
• M. Nikodem, “Laser-Based trace gas detection inside hollow-core fibers: A review,” Materials 13, 3983 (2020) https://doi.org/10.3390/ma13183983
• M. Nikodem, “Laser-Based trace gas detection inside hollow-core fibers: A review,” Materials 13, 3983 (2020) https://doi.org/10.3390/ma13183983
• G. Gomółka, M. Krajewska, M. Kaleta, A. Khegai, S. Alyshev, A. Lobanov, S. Firstov, M. Nikodem, “Operation of a single-frequency bismuth-doped fiber power amplifier near 1.65 µm,” Photonics 7, 128 (2020) https://doi.org/10.3390/photonics7040128
• G. Gomółka, M. Krajewska, M. Kaleta, A. Khegai, S. Alyshev, A. Lobanov, S. Firstov, M. Nikodem, “Operation of a single-frequency bismuth-doped fiber power amplifier near 1.65 µm,” Photonics 7, 128 (2020) https://doi.org/10.3390/photonics7040128
• G. Gomolka, A. M. Khegai, S. V. Alyshev, A. S. Lobanov, S. V. Firstov, and M. Nikodem, "Characterization of a single-frequency bismuth-doped fiber power amplifier with a continuous wave and modulated seed source at 1687 nm," Applied Optics 59, 1558-1563 (2020) https://doi.org/10.1364/AO.384413
• G. Gomolka, A. M. Khegai, S. V. Alyshev, A. S. Lobanov, S. V. Firstov, and M. Nikodem, "Characterization of a single-frequency bismuth-doped fiber power amplifier with a continuous wave and modulated seed source at 1687 nm," Applied Optics 59, 1558-1563 (2020) https://doi.org/10.1364/AO.384413
• M. Nikodem, G. Gomółka, M. Klimczak, D. Pysz, and R. Buczyński, "Demonstration of mid-infrared gas sensing using an anti-resonant hollow core fiber and a quantum cascade laser," Optics Express 27, 36350-36357 (2019). https://doi.org/10.1364/OE.27.036350
• M. Nikodem, G. Gomółka, M. Klimczak, D. Pysz, and R. Buczyński, "Demonstration of mid-infrared gas sensing using an anti-resonant hollow core fiber and a quantum cascade laser," Optics Express 27, 36350-36357 (2019). https://doi.org/10.1364/OE.27.036350
• M. Nikodem, A. Khegai and S. Firstov, "Single-frequency bismuth-doped fiber power amplifier at 1651 nm," Laser Physics Letters 16, 115102 (2019).
• M. Nikodem, A. Khegai and S. Firstov, "Single-frequency bismuth-doped fiber power amplifier at 1651 nm," Laser Physics Letters 16, 115102 (2019).
• K. Krzempek, K. Abramski, M. Nikodem, "Kagome Hollow Core Fiber-Based Mid-Infrared Dispersion Spectroscopy of Methane at Sub-ppm Levels," Sensors 19, 3352 (2019). https://doi.org/10.3390/s19153352
• K. Krzempek, K. Abramski, M. Nikodem, "Kagome Hollow Core Fiber-Based Mid-Infrared Dispersion Spectroscopy of Methane at Sub-ppm Levels," Sensors 19, 3352 (2019). https://doi.org/10.3390/s19153352
• M. Nikodem, G. Gomółka, M. Klimczak, D. Pysz, R. Buczyński, “Laser absorption spectroscopy at 2 µm inside revolver-type anti-resonant hollow core fiber,” Optics Express 27, 14998-15006 (2019). https://doi.org/10.1364/OE.27.014998
• M. Nikodem, G. Gomółka, M. Klimczak, D. Pysz, R. Buczyński, “Laser absorption spectroscopy at 2 µm inside revolver-type anti-resonant hollow core fiber,” Optics Express 27, 14998-15006 (2019). https://doi.org/10.1364/OE.27.014998
• M. Nikodem, K. Krzempek, G. Dudzik, K. Abramski, “Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm,” Optics Express 26, 21843 (2018). https://doi.org/10.1364/OE.26.021843
• M. Nikodem, K. Krzempek, G. Dudzik, K. Abramski, “Hollow core fiber-assisted absorption spectroscopy of methane at 3.4 µm,” Optics Express 26, 21843 (2018). https://doi.org/10.1364/OE.26.021843
• D. Stachowiak, P. Jaworski, P. Krzaczek, G. Maj, M. Nikodem, “Laser-based monitoring of CH4, CO2, NH3, and H2S in animal farming — system characterization and initial demonstration,” Sensors 18, 529 (2018). https://doi.org/10.3390/s18020529
• D. Stachowiak, P. Jaworski, P. Krzaczek, G. Maj, M. Nikodem, “Laser-based monitoring of CH4, CO2, NH3, and H2S in animal farming — system characterization and initial demonstration,” Sensors 18, 529 (2018). https://doi.org/10.3390/s18020529
• M. Nikodem, G. Wysocki, “Localized Chemical Detection in Quasi-Distributed Multi-Node Fiber-Ring Network,” Journal of Lightwave Technology 36, 5921-5926 (2018).
• M. Nikodem, G. Wysocki, “Localized Chemical Detection in Quasi-Distributed Multi-Node Fiber-Ring Network,” Journal of Lightwave Technology 36, 5921-5926 (2018).
• K. Krzempek, A. Hudzikowski, A. Głuszek, K. Abramski, G. Wysocki, M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Applied Physics B 124, 74 (2018) https://doi.org/10.1007/s00340-018-6941-x
• K. Krzempek, A. Hudzikowski, A. Głuszek, K. Abramski, G. Wysocki, M. Nikodem, “Multi-pass cell-assisted photoacoustic/photothermal spectroscopy of gases using quantum cascade laser excitation and heterodyne interferometric signal detection,” Applied Physics B 124, 74 (2018) https://doi.org/10.1007/s00340-018-6941-x
• D. Tomaszewska, P. Jaworski, M. Nikodem, “Frequency-multiplexed gas sensing using chirped laser molecular spectroscopy,” Opto-electronics Review 26, 103-107 (2018)
• D. Tomaszewska, P. Jaworski, M. Nikodem, “Frequency-multiplexed gas sensing using chirped laser molecular spectroscopy,” Opto-electronics Review 26, 103-107 (2018)
• K. Krzempek, G. Dudzik, K. Abramski, G. Wysocki, P. Jaworski, M. Nikodem, “Heterodyne interferometric signal retrieval in photoacoustic spectroscopy,” Optics Express 26, 1125-1132 (2018) https://doi.org/10.1364/OE.26.001125
• K. Krzempek, G. Dudzik, K. Abramski, G. Wysocki, P. Jaworski, M. Nikodem, “Heterodyne interferometric signal retrieval in photoacoustic spectroscopy,” Optics Express 26, 1125-1132 (2018) https://doi.org/10.1364/OE.26.001125
• M. Nikodem, K. Krzempek, D. Stachowiak, G. Wysocki, “Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels,” Optical Engineering 57, 011019 (2018)
• M. Nikodem, K. Krzempek, D. Stachowiak, G. Wysocki, “Quantum cascade laser-based analyzer for hydrogen sulfide detection at sub-parts-per-million levels,” Optical Engineering 57, 011019 (2018)
• M. Nikodem, G. Wysocki, “Differential optical dispersion spectroscopy,” IEEE Journal of Selected Topics in Quantum Electronics 23, Article 9000405, (2017).
• M. Nikodem, G. Wysocki, “Differential optical dispersion spectroscopy,” IEEE Journal of Selected Topics in Quantum Electronics 23, Article 9000405, (2017).
• K. Krzempek, K. Abramski, M. Nikodem, “All-fiber mid-infrared difference frequency generation source and its application to molecular dispersion spectroscopy,” Laser Physics Letters 14, 095702 (2017).
• K. Krzempek, K. Abramski, M. Nikodem, “All-fiber mid-infrared difference frequency generation source and its application to molecular dispersion spectroscopy,” Laser Physics Letters 14, 095702 (2017).
• M. Nikodem, “Chirped laser dispersion spectroscopy with parametric down-conversion for open-path gas sensing,” Optical Engineering 55, 044103 (2016).
• M. Nikodem, “Chirped laser dispersion spectroscopy with parametric down-conversion for open-path gas sensing,” Optical Engineering 55, 044103 (2016).