Building on and reinforcing their understanding of number, students begin to develop their ability to think statistically. Students recognize that a data distribution may not have a definite center and that different ways to measure center yield different values. The median measures center in the sense that it is roughly the middle value. The mean measures center in the sense that it is the value that each data point would take on if the total of the data values were redistributed equally, and also in the sense that it is a balance point. Students recognize that a measure of variability (interquartile range or mean absolute deviation) can also be useful for summarizing data because two very different sets of data can have the same mean and median yet be distinguished by their variability. Students learn to describe and summarize numerical data sets, identifying clusters, peaks, gaps, and symmetry, considering the context in which the data were collected.
6.SP.I Develop understanding of statistical variability.
6.SP.1 Recognize a statistical question as one that anticipates variability in the data related to the question and accounts for it in the answers.
6.SP.2 Understand that a set of data collected to answer a statistical question has a distribution which can be described by its center, spread, and overall shape.
6.SP.3 Recognize that a measure of center for a numerical data set summarizes all of its values with a single number, while a measure of variation describes how its values vary with a single number.
6.SP.J Summarize and describe distributions.
6.SP.4 Display numerical data in plots on a number line, including dot plots, histograms, and box plots.
6.SP.5 Summarize numerical data sets in relation to their context, such as by:
6.SP.5.a Reporting the number of observations.
6.SP.5.b Describing the nature of the attribute under investigation, including how it was measured and its units of measurement.
6.SP.5.c Giving quantitative measures of center (median and/or mean) and variability (interquartile range and/or mean absolute deviation), as well as describing any overall pattern and any striking deviations from the overall pattern with reference to the context in which the data were gathered.