Applied Nanotechnology Laboratory

Thermal Properties

Nanostructured Coatings for Drop Wise Condensation and Defrosting of Heat Exchangers

Nanostructured surface coating to promote drop wise condensation.

Coated samples with varying nanospring mat thicknesses, from 784 to 2902 nm, were studied, which exhibited static contact angles and CA hysteresis values of 155° and 16°, respectively. Dropwise condensation and increased droplet shedding were observed on these coated tubes. Tubes with 15 and 20 min SN growth times experienced an 84% increase in the condensate removal rate over the baseline. Moreover, with a hybrid wettability consisting of alternating regions of SN and bare aluminum, a 96% increase in condensate removal was experienced. Additionally, the average droplet departure size was reduced on these SN-coated tubes.

Defrosting Heat Exchangers

In collaboration with Dr. Andrew Sommers

A methyl-functionalized silica nanosprings (SN) possess water droplet static contact angles above 160° with contact angle hysteresis values as low as 6.9° for a sub-micrometer-thick coating. The methyl functional groups render the silica surface hydrophobic, whereas the geometrical and topographical characteristics of the nanosprings make it super-hydrophobic. Results show that SN are capable of removing 95% of the frost from the surface at a lower temperature than the base aluminum substrate. The sub-micrometer SN coating also decreases the time to defrost by ≈1.5 times and can withstand more than 20 frosting–defrosting cycles in a high humidity environment akin to real working conditions for heat exchangers.