講題:心理和教育研究中關於遺漏值的處理方法和應用
Handling Missing Data: Methods and Applications in Psychological and Educational Research
講者:彭昭英 教授 Prof. Chao-Ying Joanne Peng
Professor Emeritus - Department of Counseling and Educational Psychology at Indiana University Bloomington
Adjunct Professor - Department of Psychology at National Taiwan University
語言:中文
日期:2018 / 10 / 26 (五)
時間:13:00 ~ 16:00(12:30 開放簽到,13:00 活動開始)
地點:國立政治大學 藝文中心 2 樓 舜文大講堂
1. Taxonomy of missing-data methods
2. Ad Hoc methods
3. Single Imputation
4. EM algorithm
5. Multiple Imputation and its Demo using SAS
6. Statistical Assumptions
7. Implications and Recommendations
Taxonomy of missing-data methods
Ad Hoc methods
Single Imputation
EM algorithm
Multiple Imputation and its Demo using SAS
Statistical Assumptions
Implications and Recommendations
若您為政大教職員工生,電腦沒有安裝 SAS,請點擊以上按鈕啟用「政大雲」 服務,以使用該服務所提供之校園授權軟體
/* Slide #9 */
*-------- Data on Physical Fitness ---------------*
These measurements were made on men involved in a physical fitness course at N.C. State University.
Only selected variables of:
*Oxygen (oxygen intake, ml per kg body weight per minute),
*Runtime (time to run 1.5 miles in minutes), and
*RunPulse (heart rate while running) are used.
Certain values were changed to missing for the analysis.
*--------------------------------------------------*;
DATA FitMiss;
INPUT Oxygen RunTime RunPulse @@;
DATALINES;
44.609 11.37 178 45.313 10.07 185
54.297 8.65 156 59.571 . .
49.874 9.22 . 44.811 11.63 176
. 11.95 176 . 10.85 .
39.442 13.08 174 60.055 8.63 170
50.541 . . 37.388 14.03 186
44.754 11.12 176 47.273 . .
51.855 10.33 166 49.156 8.95 180
40.836 10.95 168 46.672 10.00 .
46.774 10.25 . 50.388 10.08 168
39.407 12.63 174 46.080 11.1 156
45.441 9.63 164. 8.92 .
45.118 11.08 . 39.203 12.88 168
45.790 10.47 186 50.545 9.93 148
48.673 9.40 186 47.920 11.50 170
47.467 10.50 170
;
/* ------------------------------Slide #10------------------------------ */
proc mi data=FitMiss seed=501213 mu0=50 10 180 out=outmi nimpute=5;
var Oxygen RunTime RunPulse; run;
/* ------------------------------Slide #14------------------------------ */
proc print data=outmi (obs=10);
title First 10 Observations of the Imputed Data Set;
run;
/* ------------------------------Slide #15A------------------------------ */
proc reg data=outmi outest=outreg covout ;
title 'Step2: analyze imputed data - regression';
model Oxygen= RunTime RunPulse;
by _Imputation_;
run;
/* ------------------------------Slide #15B------------------------------ */
proc print data=outreg(obs=8);
var _Imputation_ _Type_ _Name_
Intercept RunTime RunPulse;
title REG output data(First Two Imputations);
run;
/* ------------------------------Slide #18------------------------------ */
proc mianalyze data=outreg edf=28;
modeleffects Intercept RunTime RunPulse;
run;