The units in this instructional framework emphasize key standards that assist students to develop a deeper understanding of numbers. They learn to express different representations of rational numbers (e.g., fractions, decimals, and percent’s), and also discover the concept of probability. They begin to expand their knowledge of simple probabilities and are introduced to the concept of compound probability. The Big Ideas that are expressed in this unit are integrated with such routine topics as estimation, mental and basic computation. All of these concepts need to be reviewed throughout the year.
MGSE7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0 indicates an unlikely event, a probability around 1/2 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.
MGSE7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that produces it and observing its long-run relative frequency. Predict the approximate relative frequency given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
MGSE7.SP.7 Develop a probability model and use it to find probabilities of events. Compare experimental and theoretical probabilities of events. If the probabilities are not close, explain possible sources of the discrepancy.
MGSE7.SP.7a Develop a uniform probability model by assigning equal probability to all outcomes, and use the model to determine probabilities of events. For example, if a student is selected at random from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
MGSE7.SP.7b Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open‐ end down. Do the outcomes for the spinning penny appear to be equally likely based on the observed frequencies?
MGSE7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation.
MGSE7.SP.8a Understand that, just as with simple events, the probability of a compound event is the fraction of outcomes in the sample space for which the compound event occurs.
MGSE7.SP.8b Represent sample spaces for compound events using methods such as organized lists, tables and tree diagrams. For an event described in everyday language (e.g., “rolling double sixes”), identify the outcomes in the sample space which compose the event.
MGSE7.SP.8c Explain ways to set up a simulation and use the simulation to generate frequencies for compound events. For example, if 40% of donors have type A blood, create a simulation to predict the probability that it will take at least 4 donors to find one with type A blood?