The units in this instructional framework emphasize key standards that assist students to develop a deeper understanding of numbers. They learn how to solve multi- step equations and discuss the difference between equations and expressions. The Big Ideas that are expressed in this unit are integrated with such routine topics as estimation, mental and basic computation. All of these concepts need to be reviewed throughout the year.
MGSE7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with rational coefficients.
MGSE7.EE.2 Understand that rewriting an expression in different forms in a problem context can clarify the problem and how the quantities in it are related. For example a + 0.05a = 1.05a means that adding a 5% tax to a total is the same as multiplying the total by 1.05.
MGSE7.EE.3 Solve multistep real-life and mathematical problems posed with positive and negative rational numbers in any form (whole numbers, fractions, and decimals) by applying properties of operations as strategies to calculate with numbers, converting between forms as appropriate, and assessing the reasonableness of answers using mental computation and estimation strategies. For example: • If a woman making $25 an hour gets a 10% raise, she will make an additional 1/10 of her salary an hour, or $2.50, for a new salary of $27.50. • If you want to place a towel bar 9 3/4 inches long in the center of a door that is 27 1/2 inches wide, you will need to place the bar about 9 inches from each edge; this estimate can be used as a check on the exact computation.
MGSE7.EE.4 Use variables to represent quantities in a real‐world or mathematical problem, and construct simple equations and inequalities to solve problems by reasoning about the quantities.
MGSE7.EE.4a Solve word problems leading to equations of the form px + q = r and p(x + q) = r, where p, q, and r are specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an arithmetic solution, identifying the sequence of the operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
MGSE7.EE.4b Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example, as a salesperson, you are paid $50 per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the number of sales you need to make, and describe the solutions.
MGSE7.EE.4c Solve real-world and mathematical problems by writing and solving equations of the form x+p = q and px = q in which p and q are rational numbers.