Publications 2017 - 2020

All publications acknowledging support from the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, through its Geosciences program at Lawrence Berkeley National Laboratory awarded under Contract DE-AC02-497 05CH11231.

2020

1. Zhang, S., R. Zhou, and D.J. DePaolo, The seawater Sr/Ca ratio in the past 50 Myr from bulk carbonate sediments corrected for diagenesis. Earth and Planetary Science Letters, 2020. 530: p. 115949.

2. Zarzycki, P. and B. Gilbert, Temperature-dependence of the dielectric relaxation of water using non-polarizable water models. Physical Chemistry Chemical Physics, 2020.

3. Wu, Y. and L. Peruzzo, Effects of salinity and pH on the spectral induced polarization signals of graphite particles. Geophysical Journal International, 2020. 221(3): p. 1532-1541.

4. Whittaker, M.L., et al., Layer size polydispersity in hydrated montmorillonite creates multiscale porosity networks. Applied Clay Science, 2020. 190: p. 105548.

5. Tournassat, C., C.I. Steefel, and T. Gimmi, Solving the Nernst‐Planck equation in heterogeneous porous media with finite volume methods: Averaging approaches at interfaces. Water resources research, 2020. 56(3): p. e2019WR026832.

6. Subramanian, N., et al., Structural Implications of Interfacial Hydrogen Bonding in Hydrated Wyoming-Montmorillonite Clay. The Journal of Physical Chemistry C, 2020.

7. Simonnin, P., et al., Phase Transition and Liquid-Like Superionic Conduction in Ag2S. The Journal of Physical Chemistry C, 2020.

8. Pride, S., Continuum Physics and Math Methods for the Physical Science. 2020: Cambridge University Press.

9. Omaña-Sanz, B., et al., An electrochemical method to rapidly assess the environmental risk of silver release from nanowire transparent conductive films. NanoImpact, 2020: p. 100217.

10. Molins, S., et al., Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: Review of approaches and benchmark problem set. Computational Geosciences, 2020: p. 1-34.

11. Milesi, V.P., et al., Early Diagenesis of Lacustrine Carbonates in Volcanic Settings: The Role of Magmatic CO2 (Lake Dziani Dzaha, Mayotte, Indian Ocean). ACS Earth and Space Chemistry, 2020. 4(3): p. 363-378.

12. Lammers, L.N., et al., Molecular simulations of kinetic stable calcium isotope fractionation at the calcite-aqueous interface. Chemical Geology, 2020. 532: p. 119315.

13. Izumoto, S., et al., Effect of solute concentration on the spectral induced polarization response of calcite precipitation. Geophysical Journal International, 2020. 220(2): p. 1187-1196.

14. Druhan, J.L., L. Lammers, and M.S. Fantle, On the utility of quantitative modeling to the interpretation of Ca isotopes. Chemical Geology, 2020: p. 119469.

15. Commer, M., et al., Imaging of a fluid injection process using geophysical data—A didactic example. Geophysics, 2020. 85(2): p. W1-W16.

16. Brown, S.T., et al., High-temperature kinetic isotope fractionation of calcium in epidosites from modern and ancient seafloor hydrothermal systems. Earth and Planetary Science Letters, 2020. 535: p. 116101.

2019

17. Zhu, T., et al., Dynamics of geologic CO2 storage and plume motion revealed by seismic coda waves. Proceedings of the National Academy of Sciences, 2019. 116(7): p. 2464-2469.

18. Zarzycki, P. and K.M. Rosso, Energetics and the role of defects in Fe (II)-catalyzed goethite recrystallization from molecular simulations. ACS Earth and Space Chemistry, 2019. 3(2): p. 262-272.

19. Zarzycki, P., et al., Lateral water structure connects metal oxide nanoparticle faces. Journal of Materials Research, 2019. 34(3): p. 456-464.

20. Whittaker, M.L., et al., Ion exchange selectivity in clay is controlled by nanoscale chemical–mechanical coupling. Proceedings of the National Academy of Sciences, 2019. 116(44): p. 22052-22057.

21. Vasco, D.W. and K.T. Nihei, A trajectory mechanics approach for the study of wave propagation in an anisotropic elastic medium. Geophysical Journal International, 2019. 219(3): p. 1885-1899.

22. Vasco, D.W. and K. Nihei, Broad-band trajectory mechanics. Geophysical Journal International, 2019. 216(2): p. 745-759.

23. Vasco, D.W., et al., Satellite-based monitoring of groundwater depletion in California’s Central Valley. Scientific reports, 2019. 9(1): p. 1-14.

24. Vasco, D.W., J. Doetsch, and R. Brauchler, An extended trajectory-mechanics approach for calculating the path of a pressure transient: travel-time tomography. Hydrology and Earth System Sciences, 2019. 23(11): p. 4541-4560.

25. Vasco, D., et al., Rapid estimation of earthquake locations using waveform traveltimes. Geophysical Journal International, 2019. 217(3): p. 1727-1741.

26. Vasco, D., et al., The seismic response to injected carbon dioxide: Comparing observations to estimates based upon fluid flow modeling. Journal of Geophysical Research: Solid Earth, 2019. 124(7): p. 6880-6907.

27. Turchyn, A.V. and D.J. DePaolo, Seawater Chemistry Through Phanerozoic Time. Annual Review of Earth and Planetary Sciences, 2019. 47: p. 197-224.

28. Tournassat, C. and C.I. Steefel, Reactive transport modeling of coupled processes in nanoporous media. Reviews in Mineralogy and Geochemistry, 2019. 85(1): p. 75-109.

29. Tournassat, C. and C.I. Steefel, Modeling diffusion processes in the presence of a diffuse layer at charged mineral surfaces: a benchmark exercise. Computational Geosciences, 2019: p. 1-18.

30. Steefel, C.I., Reactive transport at the crossroads. Reviews in Mineralogy and Geochemistry, 2019. 85(1): p. 1-26.

31. Soler, J.M., et al., Modeling the ionic strength effect on diffusion in clay. The DR-A Experiment at Mont Terri. ACS earth and space chemistry, 2019. 3(3): p. 442-451.

32. Seigneur, N., K.U. Mayer, and C.I. Steefel, Reactive transport in evolving porous media. Reviews in Mineralogy and Geochemistry, 2019. 85(1): p. 197-238.

33. Prus, M., et al., Electrophoretic and potentiometric signatures of multistage CaCO3 nucleation. Journal of colloid and interface science, 2019. 544: p. 249-256.

34. Nakagawa, S., S.R. Pride, and K.T. Nihei, Interaction of a normally-incident plane wave with a nonlinear poroelastic fracture. The Journal of the Acoustical Society of America, 2019. 146(3): p. 1705-1720.

35. Molins, S., et al., Multi-scale model of reactive transport in fractured media: diffusion limitations on rates. Transport in Porous Media, 2019. 128(2): p. 701-721.

36. Mangiante, D., et al., Pathways for the Photoreduction of Fumarate on ZnS. ACS Earth and Space Chemistry, 2019. 3(10): p. 2250-2258.

37. Lehmann, S.G., et al., Crumpling of silver nanowires by endolysosomes strongly reduces toxicity. Proceedings of the National Academy of Sciences, 2019. 116(30): p. 14893-14898.

38. Lammers, L.N. and E.H. Mitnick, Magnesian calcite solid solution thermodynamics inferred from authigenic deep-sea carbonate. Geochimica et Cosmochimica Acta, 2019. 248: p. 343-355.

39. Harrison, A.L., B.M. Tutolo, and D.J. DePaolo, The role of reactive transport modeling in geologic carbon storage. Elements: An International Magazine of Mineralogy, Geochemistry, and Petrology, 2019. 15(2): p. 93-98.

40. Christensen, J.N., A.E. Hofmann, and D.J. DePaolo, Isotopic Fractionation of Potassium by Diffusion in Methanol. ACS omega, 2019. 4(5): p. 9497-9501.

2018

41. Zarzycki, P. and K.M. Rosso, Surface charge effects on Fe (II) sorption and oxidation at (110) goethite surfaces. The Journal of Physical Chemistry C, 2018. 122(18): p. 10059-10066.

42. Xiao, Y., et al., eds. Reactive Transport Modeling. 2018, John Wiley & Sons, Ltd.: Hoboken, NJ.

43. Whittaker, M.L., et al., Atomic Structure, Defects, and Stacking of Clay Particles by Low-Dose, High Resolution (Cryo)-TEM. Microscopy and Microanalysis, 2018. 24(S1): p. 1958-1959.

44. Wang, X., et al., Binding geometries of silicate species on ferrihydrite surfaces. ACS Earth and Space Chemistry, 2018. 2(2): p. 125-134.

45. Vasco, D., et al., Calculating trajectories associated with solute transport in a heterogeneous medium. Water Resources Research, 2018. 54(9): p. 6890-6908.

46. Vasco, D., An extended trajectory mechanics approach for calculating the path of a pressure transient: Derivation and illustration. Water Resources Research, 2018. 54(4): p. 2642-2660.

47. Silva-Tamayo, J.C., et al., Global perturbation of the marine calcium cycle during the Permian-Triassic transition. Bulletin, 2018. 130(7-8): p. 1323-1338.

48. Schilling, K., S.T. Brown, and L.N. Lammers, Mineralogical, nanostructural, and Ca isotopic evidence for non-classical calcium phosphate mineralization at circum-neutral pH. Geochimica et Cosmochimica Acta, 2018. 241: p. 255-271.

49. Pierce, A.M., et al., Use of multiple tools including lead isotopes to decipher sources of ozone and reactive mercury to urban and rural locations in Nevada, USA. Science of the Total Environment, 2018. 615: p. 1411-1427.

50. Pester, N.J., et al., Kinetics of D/H isotope fractionation between molecular hydrogen and water. Geochimica et Cosmochimica Acta, 2018. 242: p. 191-212.

51. Pestana, L.R., et al., Dynamical inversion of the energy landscape promotes non-equilibrium self-assembly of binary mixtures. Chemical science, 2018. 9(6): p. 1640-1646.

52. Perera, P.N., et al., Diffusivity of Carbon Dioxide in Aqueous Solutions under Geologic Carbon Sequestration Conditions. The Journal of Physical Chemistry B, 2018. 122(16): p. 4566-4572.

53. Mitnick, E.H., et al., Authigenic carbonate formation rates in marine sediments and implications for the marine δ13C record. Earth and Planetary Science Letters, 2018. 495: p. 135-145.

54. Miller, H.M., et al., Large carbon isotope variability during methanogenesis under alkaline conditions. Geochimica et Cosmochimica Acta, 2018. 237: p. 18-31.

55. Li, Y., et al., A Broadband Laboratory Study of the Seismic Properties of Cracked and Fluid‐Saturated Synthetic Glass Media. Journal of Geophysical Research: Solid Earth, 2018. 123(5): p. 3501-3538.

56. Kanematsu, M., G.A. Waychunas, and J.-F.o. Boily, Silicate binding and precipitation on iron oxyhydroxides. Environmental science & technology, 2018. 52(4): p. 1827-1833.

57. Deng, H., et al., Pore-scale numerical investigation of the impacts of surface roughness: Upscaling of reaction rates in rough fractures. Geochimica et Cosmochimica Acta, 2018. 239: p. 374-389.

58. Claret, F., N. Marty, and C. Tournassat, Modeling the Long‐term Stability of Multi‐barrier Systems for Nuclear Waste Disposal in Geological Clay Formations, in Reactive Transport Modeling, Y. Xiao, et al., Editors. 2018, John Wiley & Sons, Ltd.: Hoboken, NJ.

59. Christensen, J.N., et al., Potassium and calcium isotopic fractionation by plants (soybean [Glycine max], rice [Oryza sativa], and wheat [Triticum aestivum]). ACS Earth and Space Chemistry, 2018. 2(7): p. 745-752.

60. Cao, B., et al., Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D). Geochimica et Cosmochimica Acta, 2018. 222: p. 269-283.

61. Brown, S.T., et al., Uranium isotope fractionation by abiotic reductive precipitation. Proceedings of the National Academy of Sciences, 2018. 115(35): p. 8688-8693.

62. Asher, E.C., et al., The Transport of Asian Dust and Combustion Aerosols and Associated Ozone to North America as Observed From a Mountaintop Monitoring Site in the California Coast Range. Journal of Geophysical Research: Atmospheres, 2018. 123(10): p. 5667-5680.

2017

63. Zhu, T., J.B. Ajo‐Franklin, and T.M. Daley, Spatiotemporal changes of seismic attenuation caused by injected CO2 at the Frio‐II pilot site, Dayton, TX, USA. Journal of Geophysical Research: Solid Earth, 2017. 122(9): p. 7156-7171.

64. Watkins, J.M., D.J. DePaolo, and E.B. Watson, Kinetic fractionation of non-traditional stable isotopes by diffusion and crystal growth reactions. Reviews in Mineralogy and Geochemistry, 2017. 82(1): p. 85-125.

65. Watanabe, S., et al., Streamline-based time-lapse-seismic-data integration incorporating pressure and saturation effects. SPE Journal, 2017. 22(04): p. 1,261-1,279.

66. Vasco, D., et al., Estimating fluid-induced stress change from observed deformation. Geophysical Journal International, 2017. 208(3): p. 1623-1642.

67. Tokunaga, T.K., et al., Water saturation relations and their diffusion‐limited equilibration in gas shale: Implications for gas flow in unconventional reservoirs. Water Resources Research, 2017. 53(11): p. 9757-9770.

68. Tokunaga, T.K., et al., Ion diffusion within water films in unsaturated porous media. Environmental science & technology, 2017. 51(8): p. 4338-4346.

69. Soltis, J.A., et al., Electron mobility and trapping in ferrihydrite nanoparticles. ACS Earth and Space Chemistry, 2017. 1(4): p. 216-226.

70. Saldi, G.D., M. Voltolini, and K.G. Knauss, Effects of surface orientation, fluid chemistry and mechanical polishing on the variability of dolomite dissolution rates. Geochimica et Cosmochimica Acta, 2017. 206: p. 94-111.

71. Pride, S.R., et al., Dispersive transport and symmetry of the dispersion tensor in porous media. Physical Review E, 2017. 95(4): p. 043103.

72. Pride, S.R., et al., Changes in geophysical properties caused by fluid injection into porous rocks: analytical models. Geophysical Prospecting, 2017. 65(3): p. 766-790.

73. Petrov, P.V. and G.A. Newman, Multistep inversion workflow for 3D long‐offset damped elastic waves in the Fourier domain. Geophysical Prospecting, 2017. 65(5): p. 1277-1292.

74. Nakagawa, S. Laboratory visualization of hydraulic fracture propagation induced by variable-rate fluid injection within analogue rock samples containing preexisting fractures. in 51st US Rock Mechanics/Geomechanics Symposium. 2017. American Rock Mechanics Association.

75. Molins, S., et al., Mineralogical and transport controls on the evolution of porous media texture using direct numerical simulation. Water Resources Research, 2017. 53(5): p. 3645-3661.

76. Marchesini, P., J.B. Ajo-Franklin, and T.M. Daley, In situ measurement of velocity-stress sensitivity using crosswell continuous active-source seismic monitoring. Geophysics, 2017. 82(5): p. D319-D326.

77. Mangiante, D.M., et al., Mechanism of ferric oxalate photolysis. ACS Earth and Space Chemistry, 2017. 1(5): p. 270-276.

78. Li, Q., C.I. Steefel, and Y.-S. Jun, Incorporating nanoscale effects into a continuum-scale reactive transport model for CO2 -deteriorated cement. Environmental science & technology, 2017. 51(18): p. 10861-10871.

79. Lau, K.V., et al., The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower-Middle Triassic carbonate rocks. Chemical Geology, 2017. 471: p. 13-37.

80. Lammers, L.N., et al., Molecular dynamics simulations of cesium adsorption on illite nanoparticles. Journal of colloid and interface science, 2017. 490: p. 608-620.

81. Gilbert, B. and G.A. Waychunas, The timescales of mineral redox reactions, in Redox reactive minerals: Properties, reactions and applications in clean technologies, I. Ahmed and K. Hudson-Edwards, Editors. 2017.

82. Flekkøy, E.G., S.R. Pride, and R. Toussaint, Onsager symmetry from mesoscopic time reversibility and the hydrodynamic dispersion tensor for coarse-grained systems. Physical Review E, 2017. 95(2): p. 022136.

83. Deng, H., et al., Alteration and erosion of rock matrix bordering a carbonate-rich shale fracture. Environmental science & technology, 2017. 51(15): p. 8861-8868.

84. Commer, M., P.V. Petrov, and G.A. Newman, FDTD modeling of induced polarization phenomena in transient electromagnetics. Geophysical Journal International, 2017. 209(1): p. 387-405.

85. Charlet, L., et al., Diffusive transport and reaction in clay rocks: A storage (nuclear waste, CO2 , H2), energy (shale gas) and water quality issue. Advances in Water Resources, 2017. 106: p. 39-59.

86. Bourg, I.C., et al., Stern layer structure and energetics at mica–water interfaces. The Journal of Physical Chemistry C, 2017. 121(17): p. 9402-9412.

87. Berryman, J.G., Modeling nonlinear response of fractured rocks and reservoirs. International Journal for Numerical and Analytical Methods in Geomechanics, 2017. 41(5): p. 771-780.

88. Beckingham, L.E., et al., Evaluation of accessible mineral surface areas for improved prediction of mineral reaction rates in porous media. Geochimica et Cosmochimica Acta, 2017. 205: p. 31-49.