Library

SELECTED REFERENCES

  • If your reference is not on the list below, please send us an email.

  • Last updated: 24 July, 2021

  • Anderson SP, Bales RC, Duffy CJ. Critical Zone Observatories: Building a network to advance interdisciplinary study of Earth surface processes. Mineralogical Magazine 2008;72:7–10. https://doi.org/10.1180/minmag.2008.072.1.7

  • Ariagno C, Le Bouteiller C, van der Beek P, Klotz S. Sediment export in marly badland catchments modulated by frost-cracking intensity, Draix-Bléone Critical Zone Observatory, SE France. Earth Surface Dynamics Discussions 2021; 1-28. https://doi.org/10.5194/esurf-2021-49

  • Arora B, Sullivan P, Kuppel S, Yang X, Groh J. The future of critical zone science: Call for papers. Eos 2021;102. https://doi.org/10.1029/2021EO157965

  • Aubry‐Wake C, Somers LD, Alcock H, Anderson AM, Azarkhish A, Bansah S, et al. A new flow for Canadian young hydrologists: Key scientific challenges addressed by research cultural shifts. Hydrological Processes 2020;34:2001–6. https://doi.org/10.1002/hyp.13724

  • Audry S, Ateba Bessa H, Bedimo Bedimo JP, Boeglin JL, Boithias L, Braun JJ, et al. The Multiscale TROPIcal CatchmentS critical zone observatory M‐TROPICS dataset I: The Nyong River Basin, Cameroon. Hydrological Processes 2021;35(5):14138. https://doi.org/10.1002/hyp.14138

  • Baatz R, Sullivan PL, Li L, Weintraub SR, Loescher HW, Mirtl M, et al. Steering operational synergies in terrestrial observation networks: opportunity for advancing Earth system dynamics modelling. Earth System Dynamics 2018;9:593–609. https://doi.org/10.5194/esd-9-593-2018

  • Bogena HR, Bol R, Borchard N, Brüggemann N, Diekkrüger B, Drüe C, et al. A terrestrial observatory approach to the integrated investigation of the effects of deforestation on water, energy, and matter fluxes. Science China Earth Sciences 2015;58:61–75. https://doi.org/10.1007/s11430-014-4911-7

  • Bogena HR, White T, Bour O, Li X, Jensen KH. Toward Better Understanding of Terrestrial Processes through Long-Term Hydrological Observatories. Vadose Zone Journal 2018;17:180194. https://doi.org/10.2136/vzj2018.10.0194

  • Brantley SL, McDowell WH, Dietrich WE, White TS, Kumar P, Anderson S, et al. Designing a network of critical zone observatories to explore the living skin of the terrestrial Earth n.d. https://doi.org/10.5194/esurf-2017-36

  • Braud I, Chaffard V, Coussot C, Galle S, Cailletaud R. Implementing FAIR principles for dissemination of data from the French OZCAR Critical Observatory network: the Theia/OZCAR information system n.d. https://doi.org/10.5194/egusphere-egu2020-3708

  • Braud I, Chaffard V, Coussot C, Galle S, Juen P, Alexandre H, et al. Building the information system of the French Critical Zone Observatories network: Theia/OZCAR-IS. Hydrological Sciences Journal 2020:1–19. https://doi.org/10.1080/02626667.2020.1764568

  • Brooks PD, Chorover J, Fan Y, Godsey SE, Maxwell RM, McNamara JP, et al. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics. Water Resources Research 2015;51:6973–87. https://doi.org/10.1002/2015wr017039

  • Dawson TE, Hahm WJ and Crutchfield‐Peters K. Digging deeper: what the critical zone perspective adds to the study of plant ecophysiology. New Phytologist 2020; 226(3): 666-671. https://doi.org/10.1111/nph.16410

  • Fan Y, Clark M, Lawrence DM, Swenson S, Band LE, Brantley SL, et al. Hillslope Hydrology in Global Change Research and Earth System Modeling. Water Resources Research 2019;55:1737–72. https://doi.org/10.1029/2018wr023903

  • Gaillardet J, Braud I, Hankard F, Anquetin S, Bour O, Dorfliger N, et al. OZCAR: The French Network of Critical Zone Observatories. Vadose Zone Journal 2018;17:180067. https://doi.org/10.2136/vzj2018.04.0067

  • Guo L, Lin H. Critical Zone Research and Observatories: Current Status and Future Perspectives. Vadose Zone Journal 2016;15:vzj2016.06.0050. https://doi.org/10.2136/vzj2016.06.0050

  • Heinrich I, Balanzategui D, Bens O, Blasch G, Blume T, Böttcher F, et al. Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE). Vadose Zone Journal 2018;17:180116. https://doi.org/10.2136/vzj2018.06.0116

  • Hissler C, Martínez‐Carreras N, Barnich F, Gourdol L, Iffly JF, et al. The Weierbach experimental catchment in Luxembourg: A decade of critical zone monitoring in a temperate forest‐from hydrological investigations to ecohydrological perspectives. Hydrological Processes 2021;35(5):14140. https://doi.org/10.1002/hyp.14140

  • Hubbard SS, Varadharajan C, Wu Y, Wainwright H, Dwivedi D. Emerging technologies and radical collaboration to advance predictive understanding of watershed hydrobiogeochemistry. Hydrological Processes 2020;34:3175–82. https://doi.org/10.1002/hyp.13807

  • Hubbard SS, Williams KH, Agarwal D, Banfield J, Beller H, Bouskill N, et al. The East River, Colorado, Watershed: A Mountainous Community Testbed for Improving Predictive Understanding of Multiscale Hydrological-Biogeochemical Dynamics. Vadose Zone Journal 2018;17:180061. https://doi.org/10.2136/vzj2018.03.0061

  • Li D, Zhang X, Dungait JA, Green SM, Wen X, Quine TA, et al. Main controls on the denitrification rates during cropland revegetation in the southwest China Karst Critical Zone Observatory. Agriculture, Ecosystems & Environment 2021;308:107228. https://doi.org/10.1016/j.agee.2020.107228

  • Liu H, Dai J, Xu C, Peng J, Wu X, Wang H. Bedrock-associated belowground and aboveground interactions and their implications for vegetation restoration in the karst critical zone of subtropical Southwest China. Progress in Physical Geography: Earth and Environment 2021;45(1):7-19. https://doi.org/10.1177/0309133320949865

  • Kiese R, Fersch B, Baessler C, Brosy C, Butterbach-Bahl K, Chwala C, et al. The TERENO Pre-Alpine Observatory: Integrating Meteorological, Hydrological, and Biogeochemical Measurements and Modeling. Vadose Zone Journal 2018;17:180060. https://doi.org/10.2136/vzj2018.03.0060

  • Kuppel S, Tetzlaff D, Maneta MP, Soulsby C. Critical zone storage controls on the water ages of ecohydrological outputs. Geophysical Research Letters 2020;47(16):2020GL088897. https://doi.org/10.1029/2020GL088897

  • Lin H, Hopmans JW, Richter DD. Interdisciplinary Sciences in a Global Network of Critical Zone Observatories. Vadose Zone Journal 2011;10:781–5. https://doi.org/10.2136/vzj2011.0084

  • Noireaux J, Sullivan PL, Gaillardet J, Louvat P, Steinhoefel G, Brantley SL. Developing boron isotopes to elucidate shale weathering in the critical zone. Chemical Geology 2021;559:p.119900. https://doi.org/10.1016/j.chemgeo.2020.119900

  • Pi K, Bieroza M, Brouchkov A, Chen W, Dufour LJ, Gongalsky KB, Herrmann AM, Krab EJ, Landesman C, Laverman AM, Mazei N. The cold region critical zone in transition: responses to climate warming and land use change. Annual Review of Environment and Resources 2021;46. https://doi.org/10.1146/annurev-environ-012220-125703

  • Rodriguez F, Nabucet J, Kouadio J, Bechet B, Blond N, Bozonnet E, et al. Observil - A French network project of urban critical zone observatories n.d. https://doi.org/10.5194/egusphere-egu2020-14486

  • Steefel CI, Appelo CAJ, Arora B, Jacques D, Kalbacher T, Kolditz O, et al. Reactive transport codes for subsurface environmental simulation. Computational Geosciences 2015;19:445–78. https://doi.org/10.1007/s10596-014-9443-x

  • Tague CL, Papuga SA, Gerlein‐Safdi C, Dymond S, Morrison RR, Boyer EW, et al. Adding our leaves: A community‐wide perspective on research directions in ecohydrology. Hydrological Processes 2020;34:1665–73. https://doi.org/10.1002/hyp.13693

  • Weintraub SR, Flores AN, Wieder WR, Sihi D, Cagnarini C, Gonçalves DRP, et al. Leveraging Environmental Research and Observation Networks to Advance Soil Carbon Science. Journal of Geophysical Research: Biogeosciences 2019;124:1047–55. https://doi.org/10.1029/2018jg004956

  • White T, Brantley S, Banwart S, Chorover J, Dietrich W, Derry L, et al. The Role of Critical Zone Observatories in Critical Zone Science. Developments in Earth Surface Processes 2015:15–78. https://doi.org/10.1016/b978-0-444-63369-9.00002-1

  • Wlostowski AN, Molotch N, Anderson SP, Brantley SL, Chorover J, et al. Signatures of hydrologic function across the Critical Zone Observatory network. Water Resources Research 2021;57(3):2019WR026635. https://doi.org/10.1029/2019WR026635

  • Wollschläger U, Attinger S, Borchardt D, Brauns M, Cuntz M, Dietrich P, et al. The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences 2017;76. https://doi.org/10.1007/s12665-016-6327-5

  • Wymore AS, West NR, Maher K, Sullivan PL, Harpold A, Karwan D, et al. Growing new generations of critical zone scientists. Earth Surface Processes and Landforms 2017;42:2498–502. https://doi.org/10.1002/esp.4196

  • Zacharias S, Bogena H, Samaniego L, Mauder M, Fuß R, Pütz T, et al. A Network of Terrestrial Environmental Observatories in Germany. Vadose Zone Journal 2011;10:955–73. https://doi.org/10.2136/vzj2010.0139