Apa yang Sobat Pintar pikirkan setelah melihat gambar atap rumah?
Nah, seperti yang Sobat Pintar lihat, kerangka atap rumah pada gambar berbentuk segitiga.
Tahu nggak sih, kalau membuat kerangka atap rumah itu membutuhkan perhitungan, lho!
Iya.. Kita butuh menghitung panjang dari kayu yang dibutuhkan untuk membuat kerangka sehingga
berbentuk segitiga. Perhitungan yang digunakan adalah Teorema Pythagoras.
Sobat Pintar sudah tahu belum apa itu Teorema Pythagoras, hayo?
Sobat Pintar, sudah tahu belum kenapa ya nama teoremanya Pythagoras?
Yap, bener banget! Pythagoras berasal dari nama seorang filsuf dan ilmuan matematika yang berasal dari Yunani Kuno pada masa 570-495 SM di kepulauan Samos. Sebenarnya, Bapak Pythagoras ini bukan merupakan penemu pertama dari teorema ini. Karena teorema ini sudah digunakan sejak 1900 – 1600 SM oleh bangsa Mesir, Babilonia, dan Cina Kuno mengenai relasi antar sisi pada segitiga siku-siku. Buktinya, bangsa Mesir tidak akan bisa membangun pyramida tanpa pengetahuan tersebut, bukan?
Lalu, kenapa nama teoremanya ditetapkan dengan nama Pythagoras?
Jawabannya karena Pythagoras yang membawa pengetahuan ini ke peradaban Yunani Kuno serta telah membuktikannya secara sistematis. Oleh karena itu, nama Pythagoras diabadikan sebagai nama dari teorema ini.
Nah, terus bunyi dari teorema Pythagoras sendiri itu apa ya?
Eits.. Sebelum kalian tahu bunyi teoremanya, Sobat Pintar harus tahu dulu pengertian dari teorema Pythagoras.
Teorema Pythagoras menjelaskan hubungan atau relasi antara panjang sisi-sisi pada segitiga siku-siku. Sobat Pintar sudah tahu apa segitiga siku-siku, kan?
Betul! Segitiga siku-siku memiliki ciri-ciri salah satu sudut besarnya 90.
Teorema Pythagoras adalah teorema yang menjelaskan hubungan panjang sisi pada segitiga siku-siku. Oleh karena itu, teorema ini hanya berlaku pada segitiga siku-siku aja. Kamu tau kan, segitiga siku-siku itu kayak gimana?
Eits, cara mengenali segitiga siku-siku itu gampang, kok. Salah satu cirinya adalah besar sudut sikunya ada yang 90o. Nah, sekarang, coba deh kamu lihat gambar segitiga siku-siku di bawah ini!
Misalkan ada segitiga siku-siku ABC, seperti pada gambar di atas. Sisi-sisi pada segitiga tersebut dinamai sesuai dengan nama sudut di depannya. Jadi, kalo sisi dari titik A ke B, bisa dinamai dengan c, karena sudut di depan sisi tersebut adalah ∠C . Hal yang harus kamu ingat, penamaan nama sisi itu harus pakai huruf kecil, ya.
Kemudian, sisi a dan b merupakan sisi tegak pada segitiga siku-siku. Kenapa disebut sisi tegak? Soalnya, kedua sisi tersebut membentuk sudut siku-siku (90o). Sementara itu, sisi c merupakan sisi miring (hipotenusa) segitiga siku-siku. Nah, sisi hipotenusa ini selalu berhadapan dengan sudut siku-sikunya, dan jadi sisi yang paling panjang, guys.
Nah, Teorema Pythagoras menyatakan bahwa kuadrat panjang hipotenusa pada suatu segitiga siku-siku (salah satu sudutnya 90°) adalah sama dengan jumlah kuadrat panjang sisi-sisi lainnya. Atau, kalau mau dituliskan secara matematis, akan seperti ini:
Dengan c adalah hipotenusa yang juga merupakan sisi terpanjang dari segitiga siku-siku, sedangkan a dan b adalah sisi-sisi segitiga siku-siku lainnya. Gimana, sampai sini, apakah kamu mulai paham dengan rumus Teorema Pythagoras? Oke, supaya belajarnya lebih mantap lagi, kita coba kerjakan latihan soal di bawah ini, yuk!
Meskipun rumus Teorema Pythagoras hanya bisa digunakan untuk mencari sisi-sisi pada segitiga siku-siku, tapi kita juga bisa menggunakan teorema ini untuk mencari tahu bagaimana bentuk segitiga hanya dari nilai sisi-sisinya saja.
Misalkan, kita punya segitiga dengan a, b, dan c merupakan sisi-sisi segitiga tersebut. Maka sisi a, b, dan c dapat membentuk segitiga dengan tiga kemungkinan, di antaranya:
Jadi, dengan menggunakan Teorema Pythagoras, kita juga dapat menentukan, apakah ketiga barisan bilangan dapat membentuk segitiga siku-siku atau tidak. Contoh:
Diketahui sisi-sisi sebuah segitiga, yaitu a = 10, b = 8 dan c = 22. Dengan mengudaratkan sisi miring dan jumlahkan kuadrat sisi lainnya, maka diperoleh:
c2 = 222
c2 = 484
a2 + b2 = 102 + 82
a2 + b2 = 100 + 64
a2 + b2 = 164
Karena 164 < 484 atau a2 + b2 < c2 (102 + 82 < 222), maka segitiga ini bukan termasuk segitiga siku-siku, melainkan segitiga tumpul.
Setelah memahami isi dari Teorema Pythagoras, kita lanjut ke bahasan berikutnya, nih, yaitu Triple Pythagoras. Waduh, apa lagi, tuh? Triple Pythagoras adalah pasangan tiga bilangan asli yang memenuhi Teorema Pythagoras.
Beberapa pasangan 3 bilangan asli yang memenuhi Triple Pythagoras, di antaranya:
Triple Pythagoras ini bisa membantu kita untuk menentukan, mana kumpulan bilangan yang termasuk segitiga siku-siku dengan cara yang lebih cepat. Oke, supaya kamu nggak bingung, kita masuk ke contoh soalnya aja, ya.
Misalnya, diketahui segitiga dengan panjang sisi-sisinya, yaitu 6, 8, dan 10. Nah, menurutmu, apakah ketiga sisi tersebut merupakan triple Pythagoras?
Jawabannya, iya. Karena 6, 8, dan 10 merupakan kelipatan dari 3, 4, dan 5. Alhasil segitiga tersebut pasti merupakan segitiga siku-siku. Cepat kan ya?
Gunanya apa sih belajar Teorema Pythagoras? Tenang, setiap ilmu yang kamu pelajari, pasti ada manfaatnya, kok. Tidak ada yang sia-sia di dunia ini (ciee…).
Di jenjang SMA nanti, materi Teorema Pythagoras masih tetap dipelajari, sebagai dasar untuk mempelajari Trigonometri, yaitu salah satu cabang ilmu Matematika yang membahas hubungan antara panjang dan sudut segitiga. Sementara itu, di kehidupan sehari-hari, Teorema Pythagoras juga punya kegunaan yang cukup penting. Di antaranya:
Dalam sistem navigasi, ada yang namanya metode triangulasi yang digunakan untuk menentukan lokasi atau koordinat berdasarkan sudut antar titik koordinatnya. Nah, Teorema Pythagoras dapat dimanfaatkan ketika triangulasi menggunakan sudut 90.
Sementara itu, para pelaut menggunakan teorema ini untuk menghitung rute terpendek dengan menggambar dua garis vertikal dan dua garis horizontal dari posisi kapal, pilot menggunakan teorema ini untuk menentukan geolokasi yang tepat untuk memulai penurunan yang aman menuju bandara tujuan, dan kita bisa menggunakan Teorema Pythagoras untuk sistem navigasi mobil atau pelacakan ponsel.
Dalam bidang arsitektur dan konstruksi, Teorema Pythagoras bisa diaplikasikan, khususnya pada bangunan atau bidang yang berbentuk segitiga. Contohnya, atap bangunan. Rumus dasar teorema Pythagoras, yang menyatakan bahwa sebuah segitiga akan selalu memiliki sudut tegak jika sisi-sisinya memenuhi kondisi tertentu, digunakan oleh para insinyur dalam membuat kerangka bangunan ini.
Kamu tahu nggak, ukuran TV dan monitor selalu ditentukan dalam satuan diagonal, loh. Misalnya, jika sebuah televisi memiliki ukuran 32 inci, maka ukuran keseluruhannya dilakukan menggunakan pengukuran diagonal, yang dikenal sebagai sisi miring (hipotenusa). Jadi, dengan kata lain, Teorema Pythagoras juga bermanfaat dalam membantu mengukur layar TV, monitor, atau bahkan layar HP kamu.
Nah, selain manfaat di atas, Teorema Pythagoras juga merupakan dasar untuk banyak bidang di luar matematika, mulai dari fisika, geologi, arsitektur, dan lainnya.
Baca Juga: Pengertian dan Cara Menghitung Bruto, Netto, dan Tara
Ternyata, mudah ya cara menentukan panjang sisi-sisi pada segitiga siku-siku dengan menggunakan Teorema Pythagoras itu. Kalau kamu punya cara lain yang diajarkan sekolahmu, boleh juga di-share di kolom komentar supaya yang lain tahu! Tentunya, kamu dapat memelajari materi seperti ini dengan cara yang lebih asyik. Seperti menonton video beranimasi dari ruangbelajar, misalnya. Di sana, kamu akan mendapatkan rangkuman dan latihan-latihan soal yang membantumu memahami lebih dalam tentang pelajaran sekolah, lho!