Lai Lab
Lai Lab
Y.-H. Lai*, Y.-J. Lai, C.-Y. Yen and P.-C. Chuang, "A Scalable and Biomimetic Approach for TiO2 Deposition: Enabling Water Splitting by Nanostructured WO3 in Neutral Media as an Example" , Sustain. Energy Fuels, 2020, 4, 5005-5008. (link)
P.-C. Chuang and Y.-H. Lai*, "Selective production of formate over a CuO electrocatalyst by electrochemical and photoelectrochemical biomass valorisation", Catal. Sci. Technol., 2022, 12, 6375. (link)
32. F. N. I. Sari, P.-C. Chuang, S.-C. Huang, C.-Y. Lin, Y.-H. Lai, "Photoelectrochemical valorisation of organic waste for the cogeneration of solar fuels and value-added chemicals" Chem. Sci., 2025. (link)
31. P.-C. Chuang, Y.-H. Lai*, "Rational design of Ni-incorporated CuO bifunctional electrocatalyst for sustainable H2 and formate production from biomass" Int. J. Hydrogen Energy, 2025, 151, 150232. (link)
30. P.-C. Chuang, C.-Y. Lin, S.-T. Ye, Y.-H. Lai*, "Earth-Abundant CuWO4 as a Versatile Platform for Photoelectrochemical Valorization of Soluble Biomass Under Benign Conditions", Small, 2024, 2404478. (link)
29. N. Le Duy, P.-C. Chuang, C.-Y. Lin, Y.-H. Lai*, "Photoelectrochemical valorization of cellulose over bismuth-based oxide modified titanium dioxide photoanodes", J. Photochem. Photobiol. A: Chem., 2025, 458, 115932. (link)
28. Y.-H. Lai*, P.-W. Yeh, M.-J. Jhon, P. -C. Chuang, "Solar-driven hydrogen evolution in alkaline seawater over earth-abundant g-C3N4/CuFeO2 heterojunction photocatalyst using microplastic as a feedstock", Chem. Eng. J., 2023, 475, 146413. Part of Special Issue of Outstanding Early Career Female Investigators in Chemical Engineering-2023. (link)
27. P.-C. Chuang and Y.-H. Lai*, "Selective Production of Formate over CuO Electrocatalyst by Electrochemical and Photoelectrochemical Biomass Valorisation", Catal. Sci. Technol., 2022,12, 6375. (link)
26. T.-R. Ko, C.-Y. Lin*, Y.-H. Lai* "Facile preparation of functionalized and oxygen-deficient V2O5 nanosheets electrode as a versatile platform for biomimetic- and photoelectro-catalysis", Chem. Eng. J., 2022, 433, 133607. (link)
25. T.-R. Ko, Y.-C. Chueh, Y.-H. Lai*, and C.-Y. Lin*, "Simultaneous enhancement in charge separation and interfacial charge transfer of BiVO4 photoanode for photoelectrochemical water oxidation", J Taiwan Inst Chem Eng, 2020, 111, 80. (link)
24. Y.-H. Lai*, Y.-J. Lai, C.-Y. Yen and P.-C. Chuang , "A Scalable and Biomimetic Approach for TiO2 Deposition: Enabling Water Splitting by Nanostructured WO3 in Neutral Media as an Example" , Sustain. Energy Fuels, 2020, 4, 5005-5008. (link)
23. S.-C. Huang, C.-C. Cheng, Y.-H. Lai*, and C.-Y. Lin*, “Sustainable and selective formic acid production from photoelectrochemical methanol reforming at near-neutral pH using nanoporous nickel-iron oxyhydroxide-borate as the electrocatalyst "Chem. Eng. J., 2020, 395, 125176. (link)
22. Y.-H. Lai,* K. -C. Lin, C. -Y. Yen and B. -J. Jiang, “A Tandem Photoelectrochemical Water Splitting Cell Consisting of CuBi2O4 and BiVO4 Synthesized from a Single Bi4O5I2 Nanosheet Template.” Faraday Discuss.,,2019, 215, 297 . (link)
21. H.-C. Chiu, W.-H. Huang, L.-C. Hsu, Y.-G. Lin, Y.-H. Lai and C.-Y. Lin, “Calcium containing iron oxide as an efficient and robust catalyst in (photo-)electrocatalytic water oxidation at neutral pH.” Sustainable Energy Fuels, 2018, 2, 271. (link)
20. T. E. Rosser, M. A. Gross, Y. -H. Lai, and E. Reisner, “Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts.” Chem. Sci., 2016, 7, 4024. (link)
19. Y. -H. Lai, D. W. Palm, and E. Reisner, “Multi-functional Coatings from Scalable Single Source Precursor Chemistry in Tandem Photoelectrochemical Water Splitting.” Adv. Energy Mater., 2015, 5, 1501668. (link)
18. Y. -H. Lai, H. S. Park, J. Z. Zhang, P. D. Matthews, D. S. Wright and E. Reisner, “A Si Photocathode Protected and Activated with a Ti and Ni Composite Film for Solar Hydrogen Production." Chem. Eur. J., 2015, 21, 3919. (link)
17. Y. -H. Lai, M. Kato, D. Mersch and E. Reisner, “Comparison of photoelectrochemical water oxidation activity of a synthetic photocatalyst system with Photosystem II.” Faraday Discuss., 2014, 176, 199. (link)
16. C. -W. Kung, H. -W. Chen, C. -Y. Lin, Y. -H. Lai, R. Vittal, K.C. Ho, “Electrochemical synthesis of a double-layer film of ZnO nanosheets/nanoparticles and its application for dye-sensitized solar cells.” Prog. Photovolt: Res. Appl., 2014, 22, 440. (link)
15. Y. -H. Lai, T. C. King, D. S. Wright, E. Reisner, “Scalable one-step assembly of an inexpensive photoelectrode for water oxidation by deposition of a Ti and Ni-containing molecular precursor on nanostructured WO3.” Chem. Eur. J., 2013, 19, 12943. (link)
14. Y. -H. Lai, C. -Y. Lin, Y. Lv, T. C. King, A. Steiner, N. M. Muresan, L. Gan, D. S. Wright, and E. Reisner, “Facile assembly of an efficient CoOx water oxidation electrocatalyst from Co-containing polyoxotitanate nanocages.”Chem. Comm., 2013, 49, 4331. (link)
13. C. -Y. Lin, Y. -H. Lai, D. Merch, E. Reisner, “Cu2O/NiOx nanocomposite as an inexpensive photocathode in photoelectrochemical water splitting.” Chem. Sci., 2012, 3, 3482. (link)
12. K. -C. Huang, Y. -C. Wang, P. -Y. Chen, Y. -H. Lai, J. -H. Huang, Y. -H. Chen, R. -X. Dong, C. -W. Chu, J. -J. Lin, K. -C. Ho, “High performance dye-sensitized solar cells based on platinum nanoparticle/multi-wall carbon nanotube counter electrodes: The role of annealing.” J. Power Sources, 2012, 203, 274.(link)
11. L. -C. Chang, H. -N. Wu, C. -Y. Lin, Y. -H. Lai, C. -W. Hu, K. -C. Ho, “One-pot synthesis of poly(3,4-ethylenedioxythiophene)-Pt nanoparticle composite and its application to electrochemical H2O2 sensor.” Nanoscale Res. Lett., 2012, 7, 319. (link)
10. C.-Y. Lin, Y. -H. Lai, H. -W. Chen, J. -G. Chen, and K. -C. Ho, “Highly efficient dye-sensitized solar cell with a ZnO nanosheet-based photoanode.” Energy Environ. Sci., 2011, 4, 3448. (link)
9. H. -W. Chen, C. -Y. Lin, Y. -H. Lai, J. -G. Chen, C. -C. Wang, C. -W. Hu, C. -Y. Hsu, R. Vittal, and K. -C. Ho, “Electrophoretic deposition of ZnO film and its compression for a plastic based flexible dye-sensitized solar cell. ”J. Power Sources, 2011, 196, 4859. (link)
8. C. -W. Kung, C. -Y. Lin, Y. -H. Lai, R. Vittal, K. -C. Ho, “Cobalt oxide acicular nanorods with high sensitivity for the non-enzymatic detection of glucose.” Biosen. Bioelectron., 2011, 27, 125. (link)
7. Y. -H. Lai, C. -Y. Lin, H. -W. Chen, J. -G. Chen, C. -W. Kung, R. Vittal, and K. -C. Ho, “Fabrication of a ZnO film with a mosaic structure for a high efficient dye-sensitized solar cell.” J. Mater. Chem., 2010, 20, 9379. (link)
6. Y. -H. Lai, C. -Y. Lin, J. -G. Chen, C. -C. Wang, K. -C. Huang, K. -Y. Liu, K. -F. Lin, J. -J. Lin, and K. -C. Ho, “Enhancing the performance of dye-sensitized solar cells by incorporating nanomica in gelelectrolytes” Sol. Energy Mater. Sol. Cells, 2010, 94, 668. (link)
5. C. -Y. Lin, Y. -H. Lai, A. Balamurugan, C. -W. Lin, R. Vittal, and K. -C. Ho, “Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide.” Talanta, 2010, 82, 340. (link)
4. C. -Y. Lin, A. Balamurugan, Y. -H. Lai, and K. -C. Ho, “A novel poly(3,4-ethylenedioxythiophene)/iron phthalocyanine/multi-wall carbon nanotubes nanocomposite with high electrocatalytic activity for nitrite oxidation.” Talanta, 2010, 82, 1905. (link)
3. J. -G. Chen, C. -Y. Chen, C. -G. Wu, C. -Y. Lin, Y. -H. Lai, C. C. Wang, H. W. Chen, R. Vittal, and K. C. Ho, “An efficient flexible dye-sensitized solar cell with a photoanode consisting of TiO2 nanoparticle-filled and SrO-coated TiO2 nanotube arrays.” J. Mater. Chem., 2010, 20, 7201. (link)
2. J. -G. Chen, K. -Y. Liu, C. -Y. Chen, C. -Y. Lin, K. -C. Huang, Y. -H. Lai, C. -G. Wu, K. F. Lin, and K. C. Ho, “Efficient Gel-Type Electrolyte with Bismaleimide via In Situ Low Temperature Polymerization in Dye-Sensitized Solar Cells.” J. Polym. Sci. Pol. Chem., 2010, 48, 4950. (link)
1. Y. -H. Lai, C. -W. Chiu, J. -G. Chen, C. -C. Wang, J. -J. Lin, K. -F. Lin, K. -C. Ho, “Enhancing the performance of dye-sensitized solar cells by incorporating nanosilicate platelets in gel electrolyte.” Sol. Energy Mater. Sol. Cells, 2009, 93, 1860. (link)