[30] Strategic azepine engineering realizes highly efficient and stable blue narrowband light-emitting diodes
Y.-K. Chen, J. Lei,, Y.-C. Chao, Y.-C. Kung, W.-Y. Hung, L.-Y. Hsu, T.-L. Wu*
[29] Diboraanthracene derivatives with twisted azepine donors: Achieving thermally activated delayed fluorescence and mechanically enhanced photoluminescence
E.-C. Chang, C.-T. Chen, L.-H. Tsai, J.-H. Tseng, J. Lei,* T.-L. Wu*
Synth. Met. 2025, 314, 117933.
[28] Flexible, nonfused sulfone functionalized polymer with enhanced active site access for photocatalytic sacrificial hydrogen evolution
T.-F. Huang, K.-J. Lin, Y.-R. Zhuang, Y.-E. Sun, W.-C. Lin, C.-H. Li, C.-C. Lin, E.-C. Chang, C.-L. Chang, Y.-C. Liu, L.-Y. Hsu, B.-H. Li, W.-L. Chang, P. Pimbaotham, C.-Y. Bai, W.-H. Huang, D. C. K. Hoang, K. D. G. Huynh, Y.-C. Huang, C.-Y. Chung, M. M. Elsenety, C.-A. Chang, H.-N. Huang, S. Jungsuttiwong, C.-W. Pao, H.-L. Chen, T.-L. Wu, C.-C. Chang, B.-H. Chen, S.-D. Yang, K.-H. Lin*, H.-H. Chou*
[27] Hybrid Optimization and TCAD Simulation of Hole Transport and Passivation Layer In Narrow-Bandgap Perovskite Solar Cells
T.-Y. Huang, C.-C. Li, Y.-H. Lai, X.-K. Gao, Y.-C. Huang, C.-C. Yang, T.-L. Wu, C.-S. Tan*
[26] Azepine Modulation in Thermally Activated Delayed Fluorescence Emitters for OLEDs Achieving Nearly 40% EQE
J. Lei, Y.-K. Chen, M.-J. Wang, C.-L. Ko, W.-Y. Hung, L.-Y. Hsu*, T.-L. Wu*, C.-H. Cheng*
[25] Rational Molecular Design for Boosting Afterglow Efficiency in Nonplanar Carbazolocarbazoles
P.-C. Liu,+ J. Lei,+ C.-C. Liu, Y.-T. Fan, T.-L. Wu*
[24] Optimally Miscible Polymer Bulk-Heterojunction-Particles for Nonsurfactant Photocatalytic Hydrogen Evolution
W.-C. Lin, Y.-E. Sun, Y.-R. Zhuang, T.-F. Huang, K.-J. Lin, M. M. Elsenety, J.-C. Yen, H.-K. Hsu, B.-H. Chen, C.-Y. Chang, J.-W. Chang, H.-N. Huang, B.-H. Li, S. Jungsuttiwong, T. Haldar, S.-H. Wang, W.-C. Lin, T.-L. Wu, C.-W. Chen, C.-H. Yu, A.-C. Su, K.-H. Lin*, U-S. Jeng*, S.-D. Yang*, H.-H. Chou*
[23] Strategy of Modulating Nonradiative Decay for Approaching Efficient Thermally Activated Delayed Fluorescent Emitters
J. Lei, C.-W. Chang, Y.-K. Chen, P.-Y. Chou, L.-Y. Hsu*, T.-L. Wu*, C.-H. Cheng*
J. Phys. Chem. C 2024, 128, 16189–16198.
Special Issue “TADF-Active Systems: Mechanism, Applications, and Future Directions”.
[22] Elevating the upconversion performance of a multiple resonance thermally activated delayed fluorescence emitter via an embedded azepine approach
Y.-K. Chen,+ J. Lei,+ T.-L. Wu*
Chem. Sci. 2024, 15, 10146-10154.
Hightlighted in 國科會自然處《化學圖書服務計畫》113年7月號電子報
[21] Synthesis of two nitrogen-containing polyaromatic compounds through gold catalysis/DBU-promoted cyclizations
V. A. Sadaphal, T.-L. Wu, R.-S. Liu*
Chem. Commun. 2024, 60, 4294-4297.
[20] Introduction of a Chiral Biphenanthrene-Diol Unit to Achieve Circularly Polarized Thermally Activated Delayed Fluorescence
J. Lei,+ T.-A. Lou,+ C.-R. Chen,+ C.-H. Chuang, H.-Y. Liu, L.-Y. Hsu, Y.-C. Chao, T.-L. Wu*
Chem. Asian J. 2024, 19, e202300940.
Early Career Researchers Joint Special Collection 2023/2024
[19] Photophysical Tuning of Imidazolium Tetrahalidomanganate(II) Complexes towards Highly Efficient Green Emitters with Near-Unity Quantum Yield
V. Sääsk,* Y.-A. Chen, T.-F. Huang, L.-Y. Ting, T.-A. Luo, S. Fujii, K. Põhako-Esko, M. Yoshida, M. Kato,* T.-L. Wu,* H.-H. Chou*
[18] Performance and Solution Structures of Side-Chain-Bridged Oligo (Ethylene Glycol) Polymer Photocatalysts for Enhanced Hydrogen Evolution under Natural Light Illumination
T.-F. Huang, J.-J. Liu, Z.-Y. Lai, J.-W. Chang, Y.-R. Zhuang, Z.-C. Jiang, C.-L. Chang, W.-C. Lin, Y.-H. Chen, Y.-H. Wu, Y.-E. Sun, T.-A. Luo, Y.-K. Chen, J.-C. Yen, H.-K. Hsu, B.-H. Chen, L.-Y. Ting, C.-Y. Lu, Y.-T. Lin, L.-Y. Hsu, T.-L. Wu, S.-D. Yang, A.-C. Su, U-S. Jeng,* H.-H. Chou*
[17] A Diboron-Based Thermally Activated Delayed Fluorescent Material for Versatile Applications of Organic Light-Emitting Diodes
C.-M. Hsieh,+ Y.-K. Chen,+ J. Lei,+ P.-Y. Chou, S.-T. Hsieh, C.-L. Ko, W.-Y. Hung, T.-L. Wu*, and C.-H. Cheng*
ACS Mater. Lett., 2023, 5, 2339–2347. (IF: 11.4)
Hightlighted in 國科會自然處《化學圖書服務計畫》112年9月號電子報
[16] Modifications of Pyridine-3,5-dicarbonitrile Acceptor for Highly Efficient Green-to-Red Organic Light-Emitting Diodes
S.-L. Deng,+ Y.-K. Chen,+ J. Lei,+ J. Jayakumar, C.-L. Ko, W.-Y. Hung, T.-L. Wu*, C.-H. Cheng*
ACS Appl. Mater. Interfaces, 2023, 15, 33819–33828. (IF: 9.5)
[15] Substituent Engineering of the Diboron Molecular Architecture for a Nondoped and Ultrathin Emitting Layer
T.-L. Wu*, J. Lei, C.-M. Hsieh, Y.-K. Chen, P.-Y. Huang, P.-T. Lai, T.-Y. Chou, W.-C. Lin, W. Chen, C.-H. Yu, L.-Y. Hsu, H.-W. Lin, C.-H. Cheng*
[14] Increase the Molecular Length and Donor Strength to Boost Horizontal Dipole Orientation for High-efficiency OLEDs
Y.-K. Chen, J. Jayakumar, C.-L. Ko, W.-Y. Hung, T.-L. Wu*, C.-H. Cheng*
[13] Conjugated Microporous Polymers Incorporating Thiazolo[5,4-d]thiazole Moieties for Sunlight-Driven Hydrogen Production From Water
M. M. Samy, I. M.A.Mekhemer, M. G. Mohamed*, M. H. Elsayed, K.-H. Lin, Y.-K. Chen, T.-L. Wu, H.-H. Chou*, S.-W. Kuo*
Chem. Eng. J. 2022, 446, 137158. (IF: 13.2)
[12] Triarylamine-Pyridine-Carbonitriles for Organic Light-Emitting Devices with EQE Nearly 40%
Yi-Kuan Chen, Jayachandran Jayakumar, Chia-Min Hsieh, Tien-Lin Wu, Chun-Cheng Liao, Jayabalan Pandidurai, Chang-Lun Ko, Wen-Yi Hung, Chien-Hong Cheng*
[11] Diboron-Based Delayed Fluorescent Emitters with Orange-to-Red Emission and Superior Organic Light-Emitting Diode Efficiency
Chia-Min Hsieh§, Tien-Lin Wu§, Jayachandran Jayakumar, Ying-Chun Wang, Chang-Lun Ko, Wen-Yi Hung, Tzu-Chieh Lin, Hsin-Hui Wu, Kuan-Heng Lin, Cheng-Hung Lin, Shuchen Hsieh, Chien-Hong Cheng*
ACS Appl. Mater. Interfaces, 2020, 12, 23199–23206. (IF: 8.7)
[10] Pyridine-Carbonitrile–Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance
Jayachandran Jayakumar, Tien-Lin Wu, Min-Jie Huang, Pei-Yun Huang, Tsu-Yu Chou, Hao-Wu Lin, Chien-Hong Cheng*
ACS Appl. Mater. Interfaces, 2019, 11, 21042-21048. (IF: 8.0)
Tien-Lin Wu§, Ssu-Yu Liao§, Pei-Yun Huang, Zih-Siang Hong, Man-Ping Huang, Chih-Chun Lin, Mu-Jeng Cheng*, Chien-Hong Cheng*
ACS Appl. Mater. Interfaces, 2019, 11, 19294-19300. (IF: 8.0)
Tien-Lin Wu, Shih-Han Lo, Yu-Che Chang, Min-Jie Huang, Chien-Hong Cheng*
ACS Appl. Mater. Interfaces, 2019, 11, 10768−10776. (IF: 8.0)
[7] Diboron compound-based organic light-emitting diodes with high efficiency and reduced efficiency roll-off
Tien-Lin Wu, Min-Jie Huang, Chih-Chun Lin, Pei-Yun Huang, Tsu-Yu Chou, Ren-Wu Chen-Cheng, Hao-Wu Lin*, Rai-Shung Liu*, Chien-Hong Cheng*
Nature Photonics, 2018, 12, 235–240.
*Top 1 in Optics, 2017 (IF: 32.5)
Free content available from ResearchGate
Shu-Wen Dai, Bo-Wei Hsu, Chien-Yu Chen, Chia-An Lee, Hsiao-Yun Liu, Hsiao-Fang Wang, Yu-Ching Huang, Tien-Lin Wu, Arumugam Manikandan, Rong-Ming Ho, Cheng-Si Tsao, Chien-Hong Cheng, Yu-Lun Chueh, Hao-Wu Lin*
[5] Scalable van der Waals heterojunctions for high-performance photodetectors
Chao-Hui Yeh, Zheng-Yong Liang, Yung-Chang Lin, Tien-Lin Wu, Ta Fan, Yu-Cheng Chu, Chun-Hao Ma, Yu-Chen Liu, Ying-Hao Chu, Kazutomo Suenaga, Po-Wen Chiu*
ACS Appl. Mater. Interfaces, 2017, 9, 36181−36188. (IF: 7.5)
Tien-Lin Wu, Chao-Hui Yeh, Wen-Ting Hsiao, Pei-Yun Huang, Min-Jie Huang, Yen-Hsin Chiang, Chien-Hong Cheng*, Rai-Shung Liu*, and Po-Wen Chiu*
ACS Appl. Mater. Interfaces, 2017, 9, 14998−15004. (IF: 7.5)
Tien-Lin Wu, Chi-Hsien Kuo, Bo-Chao Lin, Yu-Tai Tao*, Chao-Ping Hsu*, Rai-Shung Liu*
Tien-Lin Wu, Ho-Hsiu Chou, Pei-Yun Huang, Chien-Hong Cheng, and Rai-Shung Liu*
Hung-Hung Hseuh, Ming-Yu Hsu, Tien-Lin Wu, and Rai-Shung Liu*