Research Projects 研究計劃
Genomic evolution and phylogenomic analysis of the origin and evolution of marine coccolithophores 以親緣和基因體演化分析探討海洋鈣板藻的起源和演化 (NSTC 113-2621-B-110-001-MY2; 2024-2026)
(1) Evolutionary Genomics of Coccolithophores
Coccolithophores are essential primary producers in the global ocean, converting dissolved inorganic carbon into intricate calcium carbonate scales known as coccoliths. These structures facilitate carbon sequestration to deeper waters by acting as ballast. Despite their ecological importance, the origin and evolutionary history of these striking algae remain inadequately resolved.
Our research focuses on unraveling the evolutionary history and genomic diversity of coccolithophores. We employ advanced genomic sequencing techniques to assemble high-quality genomes from different Haptophyta lineages, encompassing both calcifying coccolithophores and their non-calcifying relatives. This genomic work is complemented by transcriptomics analysis and detailed microscopic observations that examine coccolith morphology and the intracellular structures involved in their formation.
By integrating these methodologies, we aim to construct a robust phylogeny that elucidates the diversification and evolutionary trajectories of coccolithophores. Our comparative genomic analyses seek to uncover the underlying factors contributing to the observed variability in genome size, gene composition, the discordance between nuclear and organellar phylogenies within these species, and the origins and evolution of the key calcification genes.
Through this comprehensive approach, we aim to deepen our understanding of the genetic and morphological evolution of coccolithophores, shedding light on their reproductive biology and the origin of calcification mechanisms—crucial knowledge in an era of changing ocean chemistry and climate.
(1) 鈣板藻 (coccolithophores) 的演化基因體學
鈣板藻是全球海洋中重要的初級生產者,能將溶解的無機碳轉化為稱為鈣板的複雜碳酸鈣結構。這些鈣板透過壓艙石效應促進碳向深海的封存。儘管它們在生態系統中具有重要地位,但關於這些引人注目的藻類的起源和演化歷史仍未得到充分解答。
我們的研究專注於揭示鈣板藻的演化歷史和基因體多樣性。我們運用先進的基因體定序技術,組裝來自不同定鞭藻類群的高品質基因體,包括鈣化的鈣板藻及其非鈣化的近緣種。此基因體研究輔以轉錄體分析和詳細的顯微觀察,檢視鈣板的形態及其形成過程中涉及的細胞內結構。
透過整合這些方法,我們旨在重建定鞭藻的系統發生樹,闡明鈣板藻的多樣化和演化軌跡。並且利用比較基因體分析尋求導致這些物種中基因體大小、基因組成、核基因體與胞器基因體系統發生不一致性的潛在因素,以及關鍵鈣化基因的起源和演化。
透過這種全面的方法,我們希望加深對鈣板藻的遺傳、形態演化與生殖生物學的理解,探索其鈣化機制的起源——這些知識在當前海洋化學和氣候變遷的時代至關重要。
Light microscope images of selected strains of calcifying and non-calcifying coccolithophores.
鈣化與未鈣化的鈣板藻株的光學顯微鏡影像。
Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images of the diploid and haploid stages of Gephyrocarpsa huxleyi. (a) The diploid cell exhibit an exoskeleton composed of coccoliths (CaCO3 scales). (b) These coccoliths are synthesized within specialized Golgi-derived organelles, called coccolith vesicles, before being released to the cell surface via exocytosis. (c) The haploid stage is bi-flagellate but does not produce coccoliths. (d) Furthermore, there is no differentiation of coccolith vesicles within the cell.
赫氏圓石藻雙倍體 (圖 a,b) 與單倍體 (圖 c,d) 的掃描式與穿透式電子顯微鏡影像。(a) 雙倍體具有碳酸鈣板組成的外骨骼;(b) 該外骨骼是先在高基氏體衍伸的特化胞器鈣板藻囊泡 (coccolith vesicle,在圖中以 Cv 表示) 中形成,再藉由胞吐釋放到細胞表面。(c) 單倍體則不產生鈣板而具有鞭毛;(d) 細胞內亦無鈣板藻囊泡的分化。
Fern spores and gametophytes (a) Germination test of Plenasium banksiifolium spores. (b) Chlorophyll florescence of P. banksiifolium spores. (c) SEM image of Ceratopteris thalictroides spores. (d) Hermaphrodite gametophyte of C. thalictroides.
蕨類的孢子與配子體。(a) 發芽測試中的粗齒革葉紫萁孢子。(b) 革葉紫萁孢子的葉綠素螢光。(c) 水蕨孢子的 SEM 影像。(d) 水蕨的兩性配子體。
(2) Taiwan Fern and Lycophyte Spore Research and Preservation
Ferns and lycophytes covers some of Earth's most ancient vascular plant lineages, with fossils dating back to the Devonian period. Once the dominant terrestrial vegetation, these remarkable plants continue to play vital ecological roles today. Taiwan stands as a global hotspot for fern and lycophyte diversity, harboring 827 species that constitute 16% of the country's vascular plant diversity. This exceptional richness serves as a microcosm of global diversity, encompassing all 14 orders found worldwide, nearly three-quarters of all families, and half of all genera. These distinctive plants offer tremendous value across ecological conservation, bioremediation, agriculture, medicine, and horticulture.
Spores are fundamental to fern and lycophyte reproduction and dispersal. Their remarkable resilience enables long-term preservation, making them invaluable resources for species conservation and scientific research. However, global spore preservation efforts remain in nascent stages, hampered by a lack of standardized protocols, technical challenges, and limited research infrastructure.
Our project seeks to unite Taiwan's spore research and preservation institutions, optimizing collection, storage, management methodologies, and viability testing to enhance preservation quality and long-term stability. We will establish a comprehensive spore database providing open access to these resources, fostering academic research and industrial applications while democratizing access to these botanical treasures.
Beyond technological advancements, we are committed to promoting spore preservation and propagation techniques through educational outreach. By collaborating with schools, research institutions, and the public, we aim to cultivate greater awareness of these ancient plant lineages and inspire broader participation in their conservation and sustainable utilization.
(2) 臺灣蕨類與石松類孢子研究與保存
蕨類與石松類是地球上最古老的維管束植物,其化石紀錄可追溯至泥盆紀。這些曾主導陸地植被的植物,至今仍在生態系統中扮演著關鍵角色。臺灣擁有全球最豐富的蕨類與石松類多樣性之一,共記錄827種,佔全臺維管束植物的16%。臺灣的蕨類與石松類涵蓋全球所有14個目,近四分之三的科及半數的屬,是全球這些植物多樣性的縮影。這些植物不僅對生態保育與生物修復有重要貢獻,還在農業、醫藥與園藝等領域展現出極高的應用潛力。
孢子是蕨類與石松類的繁殖與散播關鍵,具有極高的耐受性與長期保存能力,成為物種保育與研究的重要資源。然而,全球的孢子保存體系仍處於發展初期,面臨標準化不足、技術挑戰與研究資源匱乏等問題。
本計劃旨在整合臺灣多個孢子研究與保存機構的資源,優化孢子的採集、儲存、管理方法與活性檢測技術,提升保存品質與穩定性。此外,計劃將建立孢子數據庫,提供開放存取平台,促進學術研究與產業應用,讓更多研究者能夠利用這些珍貴的資源。除了技術發展,我們還將積極推廣孢子保存與繁殖技術,通過與學校、研究機構與公眾的合作,提升社會對蕨類與石松類的認識,並鼓勵更多人參與其保育與應用
(3) Adaptation and evolution of cheilanthoid ferns in xeric habitats
Not all ferns live in shaded and moist environments. Cheilanthoids, an ecologically unique group of ferns comprising over 20 genera and approximately 500 species, have adapted to and diversified within high-light and xeric habitats, primarily in deserts. Furthermore, a derived lineage of the group has migrated back to seasonally drought regions in monsoon Asia.
Adapting to xeric or seasonally drought habitats, cheilanthoids have developed various strategies, including drought tolerance (utilizing specialized structures to reduce water loss), drought deciduousness, and desiccation tolerance (resurrective ferns!). Our research encompasses the study of their evolutionary history and drought-related morphological structures and functions (Kao et al., 2019), modes of reproduction and speciation in deserts (Kao et al., 2020), as well as the analysis of the contributions of different drought adaptation strategies to their macroevolution.
(3) 碎米蕨 (cheilanthoids) 對乾旱環境的適應與演化
在許多蕨類選擇在陰暗潮濕的環境中生活的同時,也有部分的蕨類選擇在高光與乾燥的環境中生活。鳳尾蕨科(Pteridaceae)的碎米蕨支是其中的佼佼者,它們起源於沙漠並分化出 20 多個屬與近 500 個物種,並且藉由對乾旱環境的適應,散播回到了潮濕但有季節性乾旱的季風亞洲。
面對季節性乾旱的挑戰,碎米蕨支的物種多次演化出各種耐受或逃避乾旱的策略,例如生成減少水分散失的構造、在乾季落葉,或者產生能夠忍受脫水的葉片,因而能在雨季復活。我們對該群植物的研究涵蓋它們的演化歷史(Kao et al., 2019)、在沙漠中的種化機制(Kao et al., 2020),同時深入探討耐旱相關的形態構造與功能,以及這些構造策略對於它們巨觀演化的影響。
Structure, diversity, and functions of "farina" in Notholaenids ferns. (a) Cross-section of a leaf showing farina, composed of brightly colored lipophilic flavonoids, is secreted by glandular hairs on the lower surface. (b) Functions of farina: It covers the lower leaf surface where stomata are located, reducing water loss from transpiration. Additionally, it absorbs UV light and reflects infrared, protecting dehydrated leaves from damage for potential resurrection. Moreover, it defends against predators or inhibits competitor growth. (c) Farina exhibits variation in color, structure, and chemical composition among different species, potentially influencing speciation through allelopathic effects.
美洲粉背蕨(Notholaenids)粉背的結構、多樣性和功能。(a) 美洲粉背蕨的葉片橫切面。背粉(farina)是由下表面的腺毛分泌出的亮色疏水性類黃酮所構成。(b) 背粉的功能。背粉覆蓋氣孔所在的下表皮,具有遲滯氣體交換減少蒸散的功能。同時,其具有吸收紫外光與反射紅外光的特性,可能保護脫水的葉片保存復活的潛力。最後,有些背粉可以抵抗掠食者或抑制競爭者的生長。(c) 不同物種具有不同顏色、結構和化學組成的背粉,是物種分類的重要依據,同時也可能通過抑它作用(allelopathy)參與物種的種化。