Publications

* - these authors contributed equally. $ - corresponding author

Manuscripts under review/Preprints

123. M. Bonilla-Quintana, A. Ghisleni, N. C. Gauthier$, P. Rangamani$: Dynamic mechanisms for membrane skeleton transitions (bioRxiv link)

122. K. Zhu*, X. Guo*, A. Chandrasekaran*, X. Miao, P. Rangamani$, W. Zhao$, Y. Miao$: Membrane curvature catalyzes actin nucleation through nano-scale condensation of N-WASP-FBP17 (bioRxiv link)

121 A. Mahapatra, S. A. Malingen, P. Rangamani$Interplay between cortical adhesion and membrane bending regulates microparticle formation (bioRxiv link)

120. T. M. Bartol$, M. Ordyan, T. J. Sejnowski, P. Rangamani$, and M. B. Kennedy$: A spatial model of autophosphorylation of CaMKII in a glutamatergic spine suggests a network-driven kinetic mechanism for bistable changes in synaptic strength (bioRxiv link)

119. L. Qiao, M. Getz, B. Gross, B. Tenner, J. Zhang$, P. Rangamani$: Spatiotemporal orchestration of calcium-cAMP oscillations on AKAP/AC nanodomains is governed by an incoherent feedforward loop (bioRxiv link)

118. E. A. Francis, P. Rangamani$: Computational modeling establishes mechanotransduction as a potent entrainment cue for the mammalian circadian clock (bioRxiv link)

117. M. Hernandez Mesa, G. C. Garcia, F. Hoerndli, K. J. McCabe, P. Rangamani$: Spine apparatus modulates Ca2+ in spines through spatial localization of sources and sinks (bioRxiv link)

116. J. M. Griswold, M. Bonilla-Quintana*, R. Pepper*,  C. T. Lee*, S. Raychaudhuri, S. Ma, Q. Gan, S. Syed, C. Zhu, M. Bell, M. Suga, Y. Yamaguchi, R. Chéreau,  U. V. Nägerl, G. Knott,  P. Rangamani$, S. Watanabe$: Membrane mechanics dictate axonal morphology and function (bioRxiv link)

115. A. Ghisleni, M. Bonilla Quintana, M. Crestani, A. Fukuzawa, P. Rangamani$, N. C. Gauthier$.  Mechanically induced topological transition of spectrin regulates its distribution in the mammalian cortex (bioRxiv link)

2024

114. E. A. Francis$ and P. Rangamani$Particle-based simulations shed light on cytoskeleton-membrane dynamics in phagocytosis. Accepted Biophys J.

113. A. Khalilimeybodi, J. Saucerman, P. Rangamani$: Modeling Cardiomyocyte Signaling and Metabolism Predicts Genotype to Phenotype Mechanisms in Hypertrophic Cardiomyopathy (bioRxiv link) Accepted, Computers in Biology and Medicine.

112. A. Fowler, K. R. Knaus, S. Khuu, A. Khalilimeybodi, S. Schenk, S. Ward, A. C. Fry, P. Rangamani, and A. D. McCulloch$: Network model of skeletal muscle cell signaling predicts differential responses to endurance and resistance exercise training. 2024. Accepted Experimental Physiology

111.  C. T. Lee$ and P. Rangamani$Modeling the mechanobchemical feedback for membrane-protein itneractions using a continuum mesh model. Methods in Enzymology. Ed. by M. Deserno, T. Baumgart, and D. Marquardt. Vol 2. 2 vols. Biophysical Approaches to Lateral and Transverse Lipid Membrane Heterogeneity. Academic Press 2024. In Press. 

110. E. A. Francis$ and P. Rangamani$Particle-based simulations shed light on cytoskeleton-membrane dynamics in phagocytosis. Accepted Biophys J.

109. A. Chandrasekaran, K. Graham, J.C. Stachowiak$, and P. Rangamani$: Kinetic trapping organizes actin filaments within liquid-like protein droplets. Accepted Nat. Comms (bioRxiv link)

108. M. Bonilla Quintana, P.Rangamani$: Biophysical modeling of actin-mediated structural plasticity reveals mechanical adaptation in dendritic spines  (bioRxiv link). Accepted, eNeuro

107. C. T. Lee, M. K. Bell, M. Bonilla-Quintana, P. Rangamani$: Biophysical modeling of synaptic plasticity. Annual Reviews of Biophysics 2024

106. K. Graham, A. Chandrasekaran, Liping Wang3, Noel Yang1, Eileen M. Lafer3, P. Rangamani$, and J.C. Stachowiak$: Liquid-like condensates mediate competition between actin branching and bundling (bioRxiv link) Accepted PNAS

2023

105. Y. Chen, D. Saintillan$, and P. Rangamani$: Cell motility modes are selected by the interplay of mechanosensitive adhesion and membrane tension (bioRxiv link) Accepted PRX Life

104. H. Alimohamadi and P. Rangamani$: Effective cell membrane tension protects red blood cells against malaria invasion (bioRxiv link) Accepted PLoS Comp Biol.

103. P. Rangamani$: Continuum modeling of lipid bilayers for curvature generation in cellular processes. Chapter in Membrane Shape and Biological Function

102. L. A. Parra-Rivas* , K. Madhivanan* , B. D. Aulston, L. Wang, D. D. Prakashchand,  N. P. Boyer, V. M. Saia-Cereda, K. Branes-Guerrero , D. P. Pizzo, P. Bagchi, V.S. Sundar, Y. Tang, U. Das, D. A. Scott, P. Rangamani, Y. Ogawa, and S. Roy$. Serine-129 phosphorylation of α-synuclein is a trigger for physiologic protein-protein interactions and synaptic function (bioRxiv link). Accepted. Neuron  

101. J. G. Laughlin, J. S. Dokken, H. N. T. Finsberg, E. A. Francis, C. T. Lee, M. E. Rognes,  P. Rangamani$. SMART: Spatial Modeling Algorithms for Reaction and Transport (arXiv link). Journal of Open Source Software, 8(90), 5580, https://doi.org/10.21105/joss.05580

100.  K. Venkatraman, C. T. Lee*, G. C. Garcia*, A. Mahapatra*, G. Perkins, K-Y Kim, H. A. Pasolli, S. Phan, J. Lippincott-Schwartz, M. Ellisman, P. Rangamani$, I. Budin$. Cristae formation is a mechanical buckling event controlled by the inner membrane lipidome (bioRxiv link). The EMBO Journal (2023) e114054

99.  H. Nakamura$, E. Rho, C. T. Lee, K. Itoh, D. Deng, S. Razavi, H. T. Matsubayashi, C. Zhu, E. Jung, P. Rangamani, S. Watanabe, and T. Inoue$. ActuAtor, a Listeria-inspired molecular tool for generating force in living cells: Controlled deformation of intracellular organizations. Cell Reports, 2023. https://doi.org/10.1016/j.celrep.2023.113089

98. G. C. Garcia., K. Gupta, T. M. Bartol, T. J. Sejnowski, P. Rangamani$: Mitochondrial morphology governs ATP production rate (bioRxiv link). J Gen Physiol (2023) 155 (9): e202213263

97. A. Leung, P.Rangamani$: Computational modeling of AMPK and mTOR crosstalk in glutamatergic synapse calcium signaling (bioRxiv link).  NPJ Systems Biology and Applications. npj Syst Biol Appl 9, 34 (2023). https://doi.org/10.1038/s41540-023-00295-4

96. F. Yuan, J. Houser, A. Sangani, L. Wang, E. Lafer, P. Rangamani$, and J. C. Stachowiak$. The ins and outs of membrane bending by intrinsically disordered proteins (bioRxiv link). Science Advances. 2023 9:27 DOI: 10.1126/sciadv.adg3485

95. A. Mahapatra and P. Rangamani$: Formation of protein-mediated tubes is governed by a snapthrough transition. Soft Matter, 2023, 19, 4345-4359 (bioRxiv link)

94. P. Rangamani$. Active nematic fluid films. J. Fluid. Mech. 2023. 960. doi: 10.1017/jfm.2023.133

93. L. Qiao*, S. Sinha*, A. A. A. El-Hafeez, I-C. Lo, T. Ngo,  N. Aznar, I. Lopez-Sanchez, V. Gupta, M. G. Farquhar, P. Rangamani$ and P. Ghosh$: A Circuit for Secretion-coupled Cellular Autonomy in Multicellular Eukaryotic cells (bioRxiv link). Mol. Syst. Biol. 2023. doi: 10.15252/msb.202211127

92. L. Qiao, P. Ghosh$ and P. Rangamani$: Design principles of dose-response alignment in coupled GTPase switches (bioRxiv link). NPJ Systems Biology and Applications. npj Syst Biol Appl 9, 3 (2023). https://doi.org/10.1038/s41540-023-00266-9

91. M. K. Bell and P. Rangamani$: Crosstalk between biochemical signaling network architecture & trafficking governs AMPAR dynamics in synaptic plasticity (bioRxiv link).  J Physiol. 2023, 601(15): 3377-3402 https://doi.org/10.1113/JP284029

90. E.P. Campbell, A. A. Abushawish, L. A. Valdez, M.K. Bell, M. Haryono, P. Rangamani, and B.L. Bloodgood$: Electrical signals in the ER are cell type and stimulus specific with extreme spatial compartmentalization in neurons. Cell Reports. doi: 10.1016/j.celrep.2022.111943

89. K.D. Graham, A. Chandrasekaran, L. Wang, A. Ladak, E. M. Lafer, P. Rangamani$, and J. C. Stachowiak$: Liquid-like assembly of VASP drives actin polymerization and bundling (bioRxiv link) Nat. Phys. (2023). https://doi.org/10.1038/s41567-022-01924-1. Discussed in The secret life of the protein VASP by Julie Plastino and Highlighted in Physics Today

88. A. Khalilimeybodi, S.I. Fraley$, and P.Rangamani$: Mechanisms underlying divergent relationships between Ca2+ and YAP/TAZ signaling (bioRxiv link) J. Physiol. 601(3): 483-515. DOI: 10.1113/JP283966

87. M. K. Bell, C. T. Lee, and P. Rangamani$: Spatiotemporal modeling reveals geometric dependence of AMPAR dynamics on dendritic spine morphology (bioRxiv link) J Physiol. 2023, 601(15): 3329-3350 DOI: 10.1113/JP283407

2022

86. N. Linden, B. Kramer$, and P. Rangamani$: Bayesian Parameter Estimation for Dynamical Models in Systems Biology (Link). PLoS Comp Biol. 2022 Oct 21;18(10):e1010651. doi: 10.1371/journal.pcbi.1010651.

85.  S. A. Malingen and P. Rangamani$: Modeling membrane curvature generation using mechanics and machine learning (bioRxiv link). J Roy.  Soc. Int. 2022 Sep;19(194):20220448. doi: 10.1098/rsif.2022.0448

84. M.K. Bell*, M. V. Holst*, C. T. Lee, and P. Rangamani$: Dendritic spine morphology regulates calcium-dependent synaptic weight change (biorxiv link). J. Gen. Physiol. 2022 Aug 1;154(8):e202112980. doi: 10.1085/jgp.202112980

83. C. Zhu, C. T. Lee$, and P. Rangamani$: Mem3DG: Modeling Membrane Mechanochemical Dynamics in 3D using Discrete Differential Geometry (biorxiv link). Biophys. Rep. 2022 Sep 14;2(3):100062. doi: 10.1016/j.bpr.2022.100062

82.  M. Hernández Mesa , J. van den Brink , W. E. Louch , K. J. McCabe, and P. Rangamani$: Nanoscale organization of ryanodine receptor distribution and phosphorylation pattern determines the dynamics of calcium sparks (Published). PLoS Comp Biol. 2022 Jun 6;18(6):e1010126. doi: 10.1371/journal.pcbi.1010126.

81. D. Serwas,  M. Akamatsu, A. Moayed, K. Vegesna, R. Vasan, J. M. Hill,  J. Schoeneberg, K. M. Davies,  P. Rangamani,  and D. G. Drubin$: Actin force     generation in vesicle formation: mechanistic insights from cryo-electron tomography. (biorxiv link); Dev. Cell. 2022 May 9;57(9):1132-1145.e5. doi: 10.1016/j.devcel.2022.04.012

80. M. Bonilla Quintana and P. Rangamani$: Can biophysical models give insight into the synaptic changes associated with addiction? (arxiv); Physical Biology. 2022 Jun 14;19(4). doi: 10.1088/1478-3975/ac6cbe

79. P. Rangamani$: The many faces of membrane tension: challenges across systems and scales. BBA: Biomembranes. 2022 Jul 1;1864(7):183897. doi: 10.1016/j.bbamem.2022.183897

78. R. B. Nowak*, H. Alimohamadi*, K. Personjamasp, P. Rangamani, and V. Fowler$: Nanoscale Dynamics of Actin Filaments in the Red Blood Cell Membrane Skeleton (bioRxiv link). Mol. Biol. Cell. 2022 Mar 1;33(3):ar28. doi: 10.1091/mbc.E21-03-0107

2021

77. D. Auddya*, X. Zhang*, R. Gulati, R. Vasan, K. Garikipati, P. Rangamani, and S. Rudraraju$: Biomembranes undergo complex, non-axisymmetric    deformations governed by Kirchhoff-Love kinematics and revealed by a three dimensional computational framework (bioRxiv link). Proc. Roy. Soc. A.        2021 Nov;477(2255):20210246. doi: 10.1098/rspa.2021.0246

76. A. Mahapatra, D. Saintillan$, and P. Rangamani$: Curvature-driven feedback on aggregation-diffusion of proteins in lipid bilayers (biorxiv link). Soft Matter, 2021, DOI: 10.1039/D1SM00502B

75R. Mendelsohn*, G. C.Garcia*, T. M. Bartol, C.T. Lee, P. Khandelwal, E. Liu, D. J. Spencer, A. Husar, E. A. Bushong, S. Phan, M. H. Ellisman, A. Skupin, T. J. Sejnowksi$, and P. Rangamani$ : Morphological principles of neuronal mitochondria (bioRxiv link). J. Comp. Neurol. 2022 Apr;530(6):886-902. doi: 10.1002/cne.25254

74. H. Alimohamadi, M. Bell, S. Halpain, and P. Rangamani$: Mechanical principles governing the shapes of dendritic spines. 2021, Frontiers in Physiology doi: 10.3389/fphys.2021.657074

73. A. Leung, D. Ohadi, G. Pekkurnaz, and P. Rangamani$: Systems modeling predicts that mitochondria ER contact sites regulate the postsynaptic energy landscape (bioRxiv link). 2021. Accepted, NPJ Syst Biol Appl . 2021 Jun2;7(1):26 https://doi.org/10.1038/s41540-021-00185-7

72. K.E. Scott, S.I. Fraley$, and P. Rangamani$: A spatial model of YAP/TAZ signaling reveals how stiffness, dimensionality, and shape contribute to emergent outcomes (bioRxiv link). 2021. Proc. Natl. Acad. Sci. May 18, 2021 118 (20) e2021571118; https://doi.org/10.1073/pnas.2021571118

71.  M. K. Bell and P. Rangamani$: Design decisions for incorporating  spatial and mechanical aspects in models of signaling networks. Accepted, Curr. Opin. Syst. Biol. 25: 70-77, doi: 10.1016/j.coisb.2021.03.004

70. F. Yuan, H. Alimohamadi, B. Bakka, A. N. Trementozzi, N. L. Fawzi, P.  Rangamani$, and J. C. Stachowiak$: Membrane bending by protein phase - separation. Proc. Natl. Acad. Sci. 2021 Mar 16;118(11):e2017435118. doi: 10.1073/pnas.2017435118.

69. K. R. Stevens$, K. S. Masters, P. I. Imoukhuede, K. A. Haynes, L. A. Setton, E. Cosgriff-Hernandez, M. A. L. Bell, P. Rangamani, S. E. Sakiyama-Elbert, S. D. Finley, R. K. Willits, A. N. Koppes, N. C. Chesler, K. L. Christman, J. B. Allen, J. Y. Wong, H. El-Samad, T. A. Desai, and O. Eniola-Adefeso$Fund Black Scientists. Cell. 2021. https://doi.org/10.1016/j.cell.2021.01.011

68. L. M. Stolerman, P. Ghosh$, and P. Rangamani$: Stability analysis of a signaling circuit with dual species of GTPase switches. Bull Math. Biol. 2021 Feb 20; 83(4) : 34. doi: 10.1007/s11538-021-00864-w

67. C. T. Lee, M. Akamatsu, and P. Rangamani$: The Value of Models for Membrane Budding in Clathrin-Mediated Endocytosis. Curr. Opin. Cell. Biol. 2021.  Volume 71, August 2021, Pages 38-45

66.  K. J. McCabe$ and P. Rangamani: Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes. J. Mol. Cell. Cardiol. 2021. 154:32-40. doi: 10.1016/j.yjmcc.2021.01.008

65. A. Mahapatra*, C. Uysalel*, and P. Rangamani$: The mechanics and thermodynamics of tubule formation in biological membranes.  J.  Membr. Biol. 2021  doi: 10.1007/s00232-020-00164-9. (Cover)

2020

64. R. R. Molina, S. Liese, H. Alimohamadi, P. Rangamani and A. Carlson$.: Diffuso-kinetic membrane budding dynamics. Soft Matter. 2020 https://doi.org/10.1039/D0SM01028F.

63. B. Tenner , M. Getz , B. Ross , D. Ohadi , C. Bohrer , E. Greenwald , S. Mehta , J. Xiao , P. Rangamani$, and J. Zhang$: Spatially compartmentalized phase regulation of a Ca2+-cAMP-PKA oscillatory circuit. eLife. 2020. 9:e55013. doi: 10.7554/eLife.55013

62. R. C. Calizo*, M. K. Bell*, A. Ron, M. Hu, S. Bhattacharya, N. J. Wong, W. G. M. Janssen, G. Perumal, P. Pederson, S. Scarlata, J. Hone, E. U. Azeloglu, P. Rangamani$, and R. Iyengar$Cell shape regulates subcellular organelle location to control early Ca 2+ signal dynamics in vascular smooth muscle cells. Sci. Rep. 2020 10; Article number 17866.

61. P. K. Kreeger$, A. Brock, H. C. Gibbs, K. J. Grande-Allen, A. H. Huang, K. S. Masters, P. Rangamani, M.R. Reagan, S. L. Servoss: Ten Simple Rules for Women Scientists During a Pandemic. Plos Comp Biol. 2020. https://doi.org/10.1371/journal.pcbi.1008370

60. J. A. Nirody$, I. Budin, and P. Rangamani$: ATP synthase: evolution, energetics, and membrane interactions. J. Gen Physiol. 2020. 152 (11): e201912475 doi: 10.1085/jgp.201912475.

59. J.Z. Zhang, T.-W. Lu , L. M. Stolerman, B.Tenner , J. R. Yang , J.-F. Zhang , M. Falcke, P.Rangamani , S.S. Taylor, S.Mehta, Jin Zhang $: Phase Separation of a PKA Regulatory Subunit Controls cAMP Compartmentation and Oncogenic Signaling. Cell.  2020 Aug 20;S0092-8674(20)30991-0. doi: 10.1016/j.cell.2020.07.043.

58. P. Rangamani$, A. Behzadan, and M. J. Holst.  Local sensitivity analysis of the 'Membrane shape equation' derived from the Helfrich energy. Mathematics and Mechanics of Solids. 2020. doi:10.1177/1081286520953888  (arXiv version).

57. A. Mahapatra, D. Saintillan, and P. Rangamani$: Transport Phenomena in Fluid Films with Curvature Elasticity. J. Fluid. Mech. 2020. 905, A8. doi:10.1017/jfm.2020.711.

56. M. Ordyan, T. Bartol, M.B. Kennedy, P. Rangamani$, and T. Sejnowksi$: Interactions between calmodulin and neurogranin govern the dynamics of CaMKII as a leaky integrator. PLoS Comp Biol. 2020 doi.org/10.1371/journal.pcbi.1008015

55. H. Alimohamadi, A. Smith, R. Nowak, V. Fowler, and P. Rangamani$: Non-uniform distribution of myosin-mediated forces governs red blood cell curvature through tension modulation. PLoS Comp Biol. 2020 doi.org/10.1371/journal.pcbi.1007890 (bioRxiv version).

54. C. T. Lee*, J. G. Laughlin*, N. Angliviel de La Beaumelle, R. E. Amaro, J. A. McCammon, R. Ramamoorthi, M. J. Holst, and P. Rangamani$: 3D mesh processing using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries. PLoS Comp Biol doi: doi.org/10.1371/journal.pcbi.1007756 (arXiv version; bioRxiv version). Link to GAMer2 files.  

53. M. Getz, P. Rangamani$, and P. Ghosh$: Regulating cellular cyclic AMP: “Sources”, “Sinks”, and now, “Tunable Valves”. WIREs Systems Biology and Systems Medicine. doi: 10.1002/wsbm.1490. 

52. H. Alimohamadi, Ben Ovryn, and P. Rangamani$: Modeling membrane nanotube morphology: the role of heterogeneity in composition and material properties. (bioRxiv version). Scientific Reports. https://www.nature.com/articles/s41598-020-59221-x

51. L. M. Stolerman*, M. Getz*, S. G. Llewellyn Smith, M. Holst, and P. Rangamani$Stability analysis of a bulk-surface reaction model for membrane-protein clustering.  Bull. Math. Biol. 2020 Feb 6;82(2):30. doi: 10.1007/s11538-020-00703-4 (arXiv version; bioRxiv version). 

50. M. Akamatsu, R. Vasan, D. Serwas, M. Ferrin, P. Rangamani$, and D. G. Drubin$ : Principles of self-organization and load adaptation by the actin cytoskeleton during clathrin-mediated endocytosis. eLife. https://elifesciences.org/articles/49840

49. R. Vasan, M. Rowan, C.T. Lee, G.R. Johnson, P. Rangamani, and M. Holst$: Applications and Challenges of Machine Learning to Enable Realistic Cellular Simulations. 2020, 7:247, doi:10.3389/fphy.2019.00247. (arxiv version) Editor's Choice, Computational Physics.

48. O. B. Tarun, H.I. Okur, P. Rangamani and S. Roke$: Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations. Communications Chemistry. 2020, https://doi.org/10.1038/s42004-020-0263-8

2019

47. R. Vasan, S. Rudraraju, M. Akamatsu, K. Garikipati, and P. Rangamani$: A mechanical model reveals that non-axisymmetric buckling lowers the energy barrier associated with membrane neck constriction.  Soft Matter. 2020 Jan 22;16(3):784-797  https://doi.org/10.1039/C9SM01494B

46. C. T. Lee$, J. Laughlin, J.B. Moody, R.E. Amaro, J. A. McCammon, M. Holst, and P. Rangamani$: An Open Source Mesh Generation Platform for Biophysical Modeling Using Realistic Cellular Geometries . Biophys. J. https://doi.org/10.1016/j.bpj.2019.11.3400 (bioRxiv version)

45. K.M. Pearce*, M. Bell*, W. H. Linthicum, Q. Wen, J. Srinivasan, P. Rangamani$, and S. Scarlata$: Gq-mediated calcium dynamics and membrane tension modulate neurite plasticity. Mol. Biol. Cell https://doi.org/10.1091/mbc.E19-09-0536 (bioRxiv version). 

44. D. Ohadi, D. Schmitt, B. Calabrese, S. Halpain, J. Zhang, and P. Rangamani$: Computational modeling reveals frequency modulation of calcium-cAMP/PKA pathway in dendritic spines. Biophys. J doi: https://doi.org/10.1016/j.bpj.2019.10.003 (bioRxiv version)

43. D. Ohadi and P. Rangamani$: Geometric control of frequency modulation of cAMP oscillations due to Ca2+-bursts in dendritic spines. Biophys. J doi: https://doi.org/10.1016/j.bpj.2019.10.004 (bioRxiv version

42. R. Vasan, M.M. Maleckar, C.D. Williams$, and P. Rangamani$: DLITE uses cell-cell interface movement to better infer cell-cell tensions. Biophys. J. doi:https://doi.org/10.1016/j.bpj.2019.09.034 (bioRxiv version) (Code).

41. M. Chabanon and P. Rangamani$: Geometric coupling of helicoidal ramps and curvature-inducing proteins in organelle membranes. J R Soc Interface. 2019 Sep 27;16(158):20190354. doi: 10.1098/rsif.2019.0354. (bioRxiv version).

40. A. Cugno, T. Bartol, T. Sejnowski, R. Iyengar, and P. Rangamani$: Geometric principles of second messenger dynamics in dendritic spines. Sci. Rep. (2019) 9:11676 | https://doi.org/10.1038/s41598-019-48028-0 (bioRxiv version)

39. M. Bell, T. Bartol, T. Sejnowski, and P. Rangamani$: Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium. J. Gen. Physiol. 2019 Aug 5;151(8):1017-1034. See associated Research News article.

38. K.E. Scott*, K. Rychel*, S. Ranamukhaarachchi, P. Rangamani, and S.I. Fraley$: Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space, Acta Biomater. 2019 Sep 15;96:81-98. doi: 10.1016/j.actbio.2019.06.003.

37. M. C. Getz, L. Swanson, R. Sahoo, P. Ghosh$, and P. Rangamani$: Guanine-nucleotide Exchange Modulator, GIV/Girdin, Serves as a Tunable Valve for Growth Factor-Stimulated cAMP Signal. Mol Biol Cell. 2019 Jun 15;30(13):1621-1633. doi: 10.1091/mbc.E18-10-0630.

36. O. Igoshin, J. Chen, J. Xing, J. Liu, T.C. Elston, M. Grabe, K.S. Kim, J. Nirody, P. Rangamani, S. Sun, and C. Wolgemuth: Biophysics at the coffee shop: lessons learned working with George Oster. Mol Biol Cell. 2019 Jul 22;30(16):1882-1889. doi: 10.1091/mbc.E19-02-0107

35. A. Bour, S. G Kruglik, M. Chabanon, P. Rangamani, N. Puff, and S. Bonneau: Lipid unsaturation properties govern the sensitivity of membranes to photo-induced oxidative stress Biophys J. 2019 Mar 5;116(5):910-920. doi: 10.1016/j.bpj.2019.01.033.

2018

34. H. Alimohamadi and P. Rangamani$: Modeling Membrane Curvature Generation due to Membrane -- Protein Interactions, Biomolecules .2018, 8:4, 120-145 https://doi.org/10.3390/biom8040120 

33. H. Alimohamadi*, R. Vasan*, J. Hassinger, J. C. Stachowiak, and P. Rangamani$: The role of traction in membrane curvature generation,  Mol. Biol. Cell. 2018, 29 :16, 2024-2035. Special issue on forces on and within cells.

32.  R. Vasan, M. S. Akamatsu, J. Schöneberg, and P. Rangamani$ (2018) Intracellular Membrane Trafficking: Modeling Local Movements in Cells. In: Stolarska M., Tarfulea N. (eds) Cell Movement. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Cham

31.  M. Chabanon$ and P. Rangamani$: Solubilization kinetics determines the pulsatory dynamics of lipid vesicles exposed to surfactant BBA Biomem. doi:10.1016/j.bbamem.2018.03.016 

30. M. Chabanon and P. Rangamani$: Gaussian Curvature Directs The Distribution Of Spontaneous Curvature On Bilayer Membrane Necks. Soft Matter 2018, doi:10.1039/C8SM00035B

29. W. Su*, D. Gettel*, M. Chabanon*, P. Rangamani$ and A. Parikh$: Pulsatile Gating of Giant Vesicles Containing Macromolecular Crowding Agents induced by Colligative Non-ideality. J. Am. Chem. Soc., 2018, doi:10.1021/jacs.7b10192

2017

28. M. Getz, J. Nirody, and P. Rangamani$: Stability analysis of spatial modeling of cell signaling. WIREs Systems Biology and Systems Medicine, 2017. doi:10.1002/wsbm.1395 (MATLAB files can be found here).

27. M. Chabanon, J. Ho, B. Liedberg, A. Parikh, and P. Rangamani$: Pulsatile lipid vesicles in osmotic stress. Biophysical J. 2017. 112: 8, 1682-1691 (cover). (MATLAB files)

26. W. T. Snead, C. C. Hayden, A. K. Gadok, C. Zhao, E. M. Lafer, P. Rangamani, J. C. Stachowiak$: Membrane fission by protein crowding. Proc. Natl. Acad. Sci. 2017. 114:16 E3258-E3267 doi: 10.1073/pnas.1616199114 (cover)

25. M. Chabanon, J. C. Stachowiak, and P. Rangamani$:  Systems biology of cellular membranes: a convergence with biophysics. WIREs Systems Biology and Systems Medicine. 2017. doi:10.1002/wsbm.1386.

24. P. Ghosh, P. Rangamani, and I. Kufareva: The GAPs, GEFs, GDIs and....now, GEMs: New kids on the heterotrimeric G protein signaling block. Cell Cycle. 2017. doi:10.1080/15384101.2017.1282584.

23. J. E. Hassinger, G. Oster, D. G. Drubin, and P. Rangamani$: Design principles for robust vesiculation in clathrin-mediated endocytosis. Proc. Natl. Acad. Sci., 2017, 114:7 E1118-1127 doi:10.1073/pnas1617705114 (MATLAB files can be found here).

22. S. K. Lim , A. S.W. Wong , H. M. de Hoog , P. Rangamani , A. N. Parikh, M. Nallani,  S. Sandin, and B. Liedberg . Spontaneous formation of nanometer scale tubular vesicles in aqueous mixtures of lipid and block copolymer amphiphiles. Soft Matter, 2017,doi:10.1039/C6SM01753C (cover). 

2016

21. P. Rangamani$, M. Levy, S. Khan, G. Oster$: Paradoxical signaling regulates structural plasticity in dendritic spines. Proc. Natl. Acad. Sci., 2016, doi:10.1073/pnas.1610391113.

20. K. Sriram*, J. G. Laughlin*, P. Rangamani$, D. M. Tartakovsky$: Shear stress induced NO production in endothelial cells. Biophys. J., 2016, 111:208-221.

19. J. Ho, P. Rangamani, B. Liedberg, and A. Parikh: Mixing Water, Transducing Energy, Shaping Membranes: Autonomously Self-regulating Giant Vesicles, Langmuir, doi:10.1021/acs.langmuir.5b04470 (cover).

2015

18. F. Bahmani, J. Christenson and P. Rangamani$: Analysis of lipid flow on minimal surfaces. Cont. Mech. Thermo. 2015, doi:10.1007/s00161-015-0458-x

17. S. Ray, A. Kassan, A. R. Busija, P. Rangamani, and H. H. Patel: The plasma membrane as a capacitor for energy and metabolism, AJP Cell, doi: 10.1152/ajpcell.00087.2015

2014

16. E. K. Eckhert, P. Rangamani, A. E. Davis, G. Oster and J. Berleman: Dual Biochemical Oscillators May Control Cellular Reversals in Myxococcus xanthus, Biophys. J., 2014, 107:2700-2711

15. K. Oglecka, P. Rangamani, R. Kraut, B. Liedberg and A. N. Parikh: Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials, eLife, 2014, 3:03695 (cover)

14. P. Rangamani$ and D. J. Steigmann: Variable tilt in lipid membranes, Proc. Royal Soc. A, 2014, 10.1098/rspa.2014.0463

13. P. Rangamani, K. K. Mandadapu and G. Oster: Protein-induced membrane curvature alters local membrane tension. Biophys. J. 2014, 107:571-562

12. P. Rangamani, A. Benjamini, A. Agrawal, B. Smit, D. Steigmann and G. Oster: Small Scale Membrane Mechanics. Biomech. Modeling. Mechanobiol. 2014, 13:697-711

11. P. Rangamani, G. Y. Xiong and R. Iyengar: Multiscale Modeling of Cell Shape from the Actin Cytoskeleton. Prog. Mol. Biol. Transl. Sci., 2014, 123:143-67

 

2013

10. P. Rangamani, D. Zhang, G. Oster and A. Shen: Lipid Nanotube Formation Driven by Osmotic Pressure. J. R. Soc. Interface, 6 Nov 2013, 10(88):20130637

9. P. Rangamani , A. Lipshtat, E. U. Azeloglu, R. C. Calizo, M. Hu, S. Ghassemi, J. Hone, S. Scarlata, S. R. Neves and R. Iyengar: Decoding Information in Cell Shape. Cell, 12 Sep 2013, 154(6):1356-69

8. P. Rangamani, A. Agrawal, K. K. Mandadapu, G. Oster and D. J. Steigmann: Interaction between surface shape and intra-surface viscous flow on lipid membranes . Biomechanics and Modeling in Mechanobiology, 2013, 12(4):833-845

 

2011

7. P. Rangamani, M. Fardin, Y. Xiong, A. L., O. Rossier, M. P. Sheetz and R. Iyengar: Signaling network triggers and membrane physical properties control actin cytoskeleton driven isotropic phase of cell spreading . Biophysical Journal, 2011, 100(4): 845-857

 

2010

6. M. Fardin*, O. Rossier*, P. Rangamani , P. Avignan, W. Vougenut, A. Mathur, R. Iyengar and M. P. Sheetz: Cell spreading as a hydrodynamic process , Soft Matter, 2010, 6, 4788 - 4799.

5. Y. Xiong*, P. Rangamani*, M. Fardin, B. Dubin-Thaler, A. Lipshtat, M. P. Sheetz and R. Iyengar: Mechanisms controlling cell size and shape during isotropic cell spreading. Biophysical Journal, 2010, 98(10):2136-2146

 

2008

4. P. Rangamani and R. Iyengar: Modeling cellular signaling networks, Essays Biochem 2008, 45:83-94

3. S. R. Neves, P. Tsokas, A. Sarkar, E. A.Grace, P. Rangamani , J. C. Shcaff, R. D. Blitzer, I. I. Moraru and R. Iyengar: Cell shape and negative links in regulatory loops coordinately regulate the propagation of spatial information within signaling networks Cell 2008, 133(4) 666-680

 

2007

2. P. Rangamani and R. Iyengar Modeling spatio-temporal interactions in the cell, Journal of Biosciences 2007, 32(1) 157-167

1. P. Rangamani and L. Sirovich Survival and Apoptotic Pathways Initiated by TNF-alpha: Modeling and Predictions , Biotechnology and Bioengineering,  2007,   97(5) 1216-1229