We would like to thank our mentors Kevin Chen and Dr. Stephanie Fraley for guiding and helping our project design come to fruition. Additionally, we would like to thank Dr. Bruce Wheeler and the BENG187 Teaching Assistants.
Images:
Cancer cell image (Homepage, Background): https://www.newscientist.com/term/cancer/
Cell Culture (Ashwin Ganesh, Shitian Li): https://www.thermofisher.com/us/en/home/references/gibco-cell-culture-basics/introduction-to-cell-culture.html
Literature:
Ando, R.; Hama, H.; Yamamoto-Hino, M.; Mizuno, H.; Miyawaki, A. An Optical Marker Based on the UV-Induced Green-to-Red Photoconversion of a Fluorescent Protein. Proc. Natl. Acad. Sci. 2002, 99 (20), 12651–12656. https://doi.org/10.1073/pnas.202320599.
Gurskaya, N. G.; Verkhusha, V. V.; Shcheglov, A. S.; Staroverov, D. B.; Chepurnykh, T. V.; Fradkov, A. F.; Lukyanov, S.; Lukyanov, K. A. Engineering of a Monomeric Green-to-Red Photoactivatable Fluorescent Protein Induced by Blue Light. Nat. Biotechnol. 2006, 24 (4), 461–465. https://doi.org/10.1038/nbt1191.
American Hospital Association. Fast Facts on U.S. Hospitals, 2019. AHA 2019.
Murphy, S. L. Mortality in the United States, 2017. 2018, No. 328, 8.
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2019. CA. Cancer J. Clin. 2019, 69 (1), 7–34. https://doi.org/10.3322/caac.21551.
Ravi, M.; Paramesh, V.; Kaviya, S. R.; Anuradha, E.; Solomon, F. D. P. 3D Cell Culture Systems: Advantages and Applications. J. Cell. Physiol. 2015, 230 (1), 16–26. https://doi.org/10.1002/jcp.24683.
Ding, Y.; Liu, W.; Yu, W.; Lu, S.; Liu, M.; Kaplan, D. L.; Wang, X. Three-Dimensional Tissue Culture Model of Human Breast Cancer for the Evaluation of Multidrug Resistance. J. Tissue Eng. Regen. Med. 2018, 12 (9), 1959–1971. https://doi.org/10.1002/term.2729.
Booij, T. H.; Price, L. S.; Danen, E. H. J. 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis. SLAS Discov. Adv. Life Sci. RD 2019, 24 (6), 615–627. https://doi.org/10.1177/2472555219830087.
Simian, M.; Bissell, M. J. Organoids: A Historical Perspective of Thinking in Three Dimensions. J. Cell Biol. 2017, 216 (1), 31. https://doi.org/10.1083/jcb.201610056.
3D Cell Culture Market Size, Share & Trends Analysis Report By Technology, By End Use, By Application (Tissue Engineering, Drug Development, Stem Cell Research, Cancer), By Culture Component, And Segment Forecasts 2018 - 2024. Gd. View Res. 2018.
Mellott, A. J., Shinogle, H. E., Moore, D. S. & Detamore, M. S. Fluorescent Photo-conversion: A second chance to label unique cells. Cell. Mol. Bioeng. 8, 187–196 (2015).
Konen, J. et al. Image-guided genomics of phenotypically heterogeneous populations reveals vascular signalling during symbiotic collective cancer invasion. Nat. Commun. 8, 1–15 (2017).
Kalinin, A. A. et al. 3D Shape Modeling for Cell Nuclear Morphological Analysis and Classification. Sci. Rep. 8, 1–14 (2018).
Siegel, R. L.; Miller, K. D.; Jemal, A. Cancer Statistics, 2019. CA. Cancer J. Clin. 2019, 69 (1), 7–34. https://doi.org/10.3322/caac.21551.
Sottoriva, A.; Spiteri, I.; Piccirillo, S. G. M.; Touloumis, A.; Collins, V. P.; Marioni, J. C.; Curtis, C.; Watts, C.; Tavaré, S. Intratumor Heterogeneity in Human Glioblastoma Reflects Cancer Evolutionary Dynamics. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (10), 4009–4014. https://doi.org/10.1073/pnas.1219747110.
Dagogo-Jack, I.; Shaw, A. T. Tumour Heterogeneity and Resistance to Cancer Therapies. Nat. Rev. Clin. Oncol. 2018, 15 (2), 81–94. https://doi.org/10.1038/nrclinonc.2017.166.
Morris, L. G. T.; Riaz, N.; Desrichard, A.; Şenbabaoğlu, Y.; Hakimi, A. A.; Makarov, V.; Reis-Filho, J. S.; Chan, T. A. Pan-Cancer Analysis of Intratumor Heterogeneity as a Prognostic Determinant of Survival. Oncotarget 2016, 7 (9), 10051–10063. https://doi.org/10.18632/oncotarget.7067.
Swanton, C. Intratumor Heterogeneity: Evolution through Space and Time. Cancer Res. 2012, 72 (19), 4875–4882. https://doi.org/10.1158/0008-5472.CAN-12-2217.
McGranahan, N.; Swanton, C. Biological and Therapeutic Impact of Intratumor Heterogeneity in Cancer Evolution. Cancer Cell 2015, 27 (1), 15–26. https://doi.org/10.1016/j.ccell.2014.12.001.
Yuan, Y. Spatial Heterogeneity in the Tumor Microenvironment. Cold Spring Harb. Perspect. Med. 2016, 6 (8), a026583. https://doi.org/10.1101/cshperspect.a026583.
Haycock, J. W. 3D Cell Culture: A Review of Current Approaches and Techniques. In 3D Cell Culture; Haycock, J. W., Ed.; Humana Press: Totowa, NJ, 2011; Vol. 695, pp 1–15. https://doi.org/10.1007/978-1-60761-984-0_1.
Ravi, M.; Paramesh, V.; Kaviya, S. R.; Anuradha, E.; Solomon, F. D. P. 3D Cell Culture Systems: Advantages and Applications: 3D CELL CULTURE SYSTEMS. J. Cell. Physiol. 2015, 230 (1), 16–26. https://doi.org/10.1002/jcp.24683.
Grys, B. T.; Lo, D. S.; Sahin, N.; Kraus, O. Z.; Morris, Q.; Boone, C.; Andrews, B. J. Machine Learning and Computer Vision Approaches for Phenotypic Profiling. J. Cell Biol. 2017, 216 (1), 65–71. https://doi.org/10.1083/jcb.201610026.
Camacho, D. M.; Collins, K. M.; Powers, R. K.; Costello, J. C.; Collins, J. J. Next-Generation Machine Learning for Biological Networks. Cell 2018, 173 (7), 1581–1592. https://doi.org/10.1016/j.cell.2018.05.015.
Chamier, L. von; Laine, R. F.; Henriques, R. Artificial Intelligence for Microscopy: What You Should Know. Biochem. Soc. Trans. 2019, BST20180391. https://doi.org/10.1042/BST20180391.
Moen, E.; Bannon, D.; Kudo, T.; Graf, W.; Covert, M.; Valen, D. V. Deep Learning for Cellular Image Analysis. Nat. Methods 2019, 1–14. https://doi.org/10.1038/s41592-019-0403-1.
Horstmeyer, R.; Chen, R. Y.; Kappes, B.; Judkewitz, B. Convolutional Neural Networks That Teach Microscopes How to Image. ArXiv170907223 Phys. 2017.
Ljosa, V.; Caie, P. D.; Ter Horst, R.; Sokolnicki, K. L.; Jenkins, E. L.; Daya, S.; Roberts, M. E.; Jones, T. R.; Singh, S.; Genovesio, A.; et al. Comparison of Methods for Image-Based Profiling of Cellular Morphological Responses to Small-Molecule Treatment. J. Biomol. Screen. 2013, 18 (10), 1321–1329. https://doi.org/10.1177/1087057113503553.
Naylor, P.; Laé, M.; Reyal, F.; Walter, T. Segmentation of Nuclei in Histopathology Images by Deep Regression of the Distance Map. IEEE Trans. Med. Imaging 2019, 38 (2), 448–459. https://doi.org/10.1109/TMI.2018.2865709.
Vu, Q. D.; Graham, S.; Kurc, T.; To, M. N. N.; Shaban, M.; Qaiser, T.; Koohbanani, N. A.; Khurram, S. A.; Kalpathy-Cramer, J.; Zhao, T.; et al. Methods for Segmentation and Classification of Digital Microscopy Tissue Images. Front. Bioeng. Biotechnol. 2019, 7. https://doi.org/10.3389/fbioe.2019.00053.
Piccinini, F.; Balassa, T.; Szkalisity, A.; Molnar, C.; Paavolainen, L.; Kujala, K.; Buzas, K.; Sarazova, M.; Pietiainen, V.; Kutay, U.; et al. Advanced Cell Classifier: User-Friendly Machine-Learning-Based Software for Discovering Phenotypes in High-Content Imaging Data. Cell Syst. 2017, 4 (6), 651-655.e5. https://doi.org/10.1016/j.cels.2017.05.012.
Gurskaya, N. G.; Verkhusha, V. V.; Shcheglov, A. S.; Staroverov, D. B.; Chepurnykh, T. V.; Fradkov, A. F.; Lukyanov, S.; Lukyanov, K. A. Engineering of a Monomeric Green-to-Red Photoactivatable Fluorescent Protein Induced by Blue Light. Nat. Biotechnol. 2006, 24 (4), 461–465. https://doi.org/10.1038/nbt1191.
Zhou, X. X.; Lin, M. Z. Photoswitchable Fluorescent Proteins: Ten Years of Colorful Chemistry and Exciting Applications. Curr. Opin. Chem. Biol. 2013, 17 (4), 682–690. https://doi.org/10.1016/j.cbpa.2013.05.031.
Patel, D. V.; McGhee, C. N. Contemporary in Vivo Confocal Microscopy of the Living Human Cornea Using White Light and Laser Scanning Techniques: A Major Review. Clin. Experiment. Ophthalmol. 2007, 35 (1), 71–88. https://doi.org/10.1111/j.1442-9071.2007.01423.x.
Wang, Y.; Shyy, J. Y.-J.; Chien, S. Fluorescence Proteins, Live-Cell Imaging, and Mechanobiology: Seeing Is Believing. Annu. Rev. Biomed. Eng. 2008, 10 (1), 1–38. https://doi.org/10.1146/annurev.bioeng.010308.161731.
Konen, J.; Summerbell, E.; Dwivedi, B.; Galior, K.; Hou, Y.; Rusnak, L.; Chen, A.; Saltz, J.; Zhou, W.; Boise, L. H.; et al. Image-Guided Genomics of Phenotypically Heterogeneous Populations Reveals Vascular Signalling during Symbiotic Collective Cancer Invasion. Nat. Commun. 2017, 8 (1), 1–15. https://doi.org/10.1038/ncomms15078.
Ranamukhaarachchi, S. K.; Modi, R. N.; Han, A.; Velez, D. O.; Kumar, A.; Engler, A. J.; Fraley, S. I. Macromolecular Crowding Tunes 3D Collagen Architecture and Cell Morphogenesis. Biomater. Sci. 2019, 7 (2), 618–633. https://doi.org/10.1039/C8BM01188E.
Velez, D. O.; Tsui, B.; Goshia, T.; Chute, C. L.; Han, A.; Carter, H.; Fraley, S. I. 3D Collagen Architecture Induces a Conserved Migratory and Transcriptional Response Linked to Vasculogenic Mimicry. Nat. Commun. 2017, 8 (1), 1–12. https://doi.org/10.1038/s41467-017-01556-7.
Selinummi, J.; Ruusuvuori, P.; Podolsky, I.; Ozinsky, A.; Gold, E.; Yli-Harja, O.; Aderem, A.; Shmulevich, I. Bright Field Microscopy as an Alternative to Whole Cell Fluorescence in Automated Analysis of Macrophage Images. PLOS ONE 2009, 4 (10), e7497. https://doi.org/10.1371/journal.pone.0007497.
Lu, S. et al. The Spatiotemporal Pattern of Src Activation at Lipid Rafts Revealed by Diffusion-Corrected FRET Imaging. PLOS Comput. Biol. 2008, 4, e1000127. https://doi.org/10.1371/journal.pcbi.1000127
Lu, S. et al. Computational Analysis of the Spatiotemporal Coordination of Polarized PI3K and Rac1 Activities in Micro-Patterned Live Cells. PLOS ONE 2011, 6, e21293. https://doi.org/10.1371/journal.pone.0021293
Carr, S. DNA Chip as SNP Detectors. https://www.mun.ca/biology/scarr/DNA_Chips.html.
Al-Kofahi, Y., Zaltsman, A., Graves, R., Marshall, W. & Rusu, M. A deep learning-based algorithm for 2-D cell segmentation in microscopy images. BMC Bioinformatics 2018, 19, 365. https://doi.org/10.1186/s12859-018-2375-z
Willenbockel, V. et al. The SHINE toolbox for controlling low-level image properties. J. Vis. 2010, 10, 653–653. https://doi.org/10.1167/10.7.653
McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology. PLOS Biol. 2018, 16, e2005970. https://doi.org/10.1371/journal.pbio.2005970