VCE Chemistry

Victorian Certificate of Education subject
Lesson Load10 periods per fortnight
Unit LoadUnit 1 (Semester 1, 2024)  / Unit 2 (Semester 2, 2024)Unit 3 (Semester 1, 2024)  / Unit 4 (Semester 2, 2024)

The study of VCE Chemistry involves investigating and analysing the composition and behaviour of matter, and the chemical processes involved in producing useful materials for society in ways that minimise adverse effects on human health and the environment. Chemistry underpins the generation of energy for use in homes and industry, the maintenance of clean air and water, the production of food, medicines and new materials, and the treatment of wastes. 

An important feature of undertaking a VCE science study is the opportunity for students to engage in a range of scientific investigation methodologies, to develop key science skills, and to interrogate the links between knowledge, theory and practice. Students work collaboratively as well as independently on a range of scientific investigations involving controlled experiments, fieldwork, case studies, correlational studies, classification and identification, modelling, simulations, literature reviews, and the development of a product, process or system. Knowledge and application of the safety considerations, including use of safety data sheets, and ethical guidelines associated with undertaking investigations is integral to the study of VCE Chemistry.

As well as increasing their understanding of scientific processes, students develop insights into how knowledge in chemistry has changed, and continues to change, in response to new evidence, discoveries and thinking. They explore the impact of chemistry on their own lives, and on society and the environment. They develop capacities that enable them to critically assess the strengths and limitations of science, respect evidence-based conclusions and gain an awareness of the ethical contexts of scientific endeavours. Students consider how science is connected to innovation in addressing contemporary chemistry-based challenges.

UNIT 1: How can the diversity of materials be explained?

The development and use of materials for specific purposes is an important human endeavour. In this unit students investigate the chemical structures and properties of a range of materials, including covalent compounds, metals, ionic compounds and polymers. They are introduced to ways that chemical quantities are measured. They consider how manufacturing innovations lead to more sustainable products being produced for society through the use of renewable raw materials and a transition from a linear economy towards a circular economy.

Students conduct practical investigations involving the reactivity series of metals, separation of mixtures by chromatography, use of precipitation reactions to identify ionic compounds, determination of empirical formulas, and synthesis of polymers.

Throughout this unit students use chemistry terminology including symbols, formulas, chemical nomenclature and equations to represent and explain observations and data from their own investigations and to evaluate the chemistry-based claims of others.

UNIT 2: How do chemical reactions shape the natural world?

In this area of study students focus on the measurement of quantities in chemistry and the structures and properties of organic compounds, including polymers. 

The selection of learning contexts should allow students to develop practical techniques to quantify amounts of substances and to investigate the chemistry of organic compounds. Students develop their skills in the use of scientific equipment and apparatus. They perform calculations based on the generation of primary data, such as determining the empirical formula of an ionic compound or hydrated salt, and consider how the quality of data generated in experiments can be improved. They may construct models to visualise the similarities and differences between families of organic compounds. Students may use common substances in their experiments such as making glue from milk. They may investigate the environmental impact of the production of polymers: for example, the recycling of biodegradable polymers derived from natural resources such as biopolyethene (Bio-PE). Students respond to challenges such as investigating how changing formulations for polymers affects their structure and properties: for example, by creating slime. 

UNIT 3: How can chemical processes be designed to optimise efficiency?

The global demand for energy and materials is increasing with world population growth. In this unit students explore energy options and the chemical production of materials with reference to efficiencies, renewability and the minimisation of their impact on the environment.

Students compare and evaluate different chemical energy resources, including fossil fuels, biofuels, galvanic cells and fuel cells. They investigate the combustion of fuels, including the energy transformations involved, the use of stoichiometry to calculate the amounts of reactants and products involved in the reactions, and calculations of the amounts of energy released and their representations. Students consider the purpose, design and operating principles of galvanic cells, fuel cells and electrolytic cells. In this context they use the electrochemical series to predict and write half and overall redox equations, and apply Faraday’s laws to calculate quantities in electrolytic reactions.

Students analyse manufacturing processes with reference to factors that influence their reaction rates and extent. They investigate and apply the equilibrium law and Le Chatelier’s principle to different reaction systems, including to predict and explain the conditions that will improve the efficiency and percentage yield of chemical processes. They use the language and conventions of chemistry including symbols, units, chemical formulas and equations to represent and explain observations and data collected from experiments, and to discuss chemical phenomena.

UNIT 4: How are organic compounds categorised, analysed and used?

The carbon atom has unique characteristics that explain the diversity and number of organic compounds that not only constitute living tissues but are also found in the fuels, foods, medicines and many of the materials we use in everyday life. In this unit students investigate the structural features, bonding, typical reactions and uses of the major families of organic compounds including those found in food.

Students study the ways in which organic structures are represented and named. They process data from instrumental analyses of organic compounds to confirm or deduce organic structures, and perform volumetric analyses to determine the concentrations of organic chemicals in mixtures. Students consider the nature of the reactions involved to predict the products of reaction pathways and to design pathways to produce particular compounds from given starting materials.

Students investigate key food molecules through an exploration of their chemical structures, the hydrolytic reactions in which they are broken down and the condensation reactions in which they are rebuilt to form new molecules. In this context the role of enzymes and coenzymes in facilitating chemical reactions is explored. Students use calorimetry as an investigative tool to determine the energy released in the combustion of foods.

For further information on the subjects on offer, refer to the VCE 2024 Subject Guide in link below

Detailed information relating to each unit can be found via the Victorian Curriculum and Assessment Authority (VCAA) website: