Sections 4.5 - 4.7
Sections 9.1, 9.2, 9.4
Lesson 4.5 - Rules of Exponents 4.5 Practice Quiz
Lesson 4.6 - Negative and Zero Exponents 4.6 Practice Quiz
Lesson 4.7 - Scientific Notation 4.7 Practice Quiz
Lesson 9.1 - Square Roots 9.1 Practice Quiz
Unit Objectives:
New Jersey Student Learning Standards for this Unit:
CCSS.Math.Content.8.NS.A.1
Know that numbers that are not rational are called irrational. Understand informally that every number has a decimal expansion; for rational numbers show that the decimal expansion repeats eventually, and convert a decimal expansion which repeats eventually into a rational number. •
CCSS.Math.Content.8.NS.A.2
Use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions (e.g., π2). For example, by truncating the decimal expansion of √2, show that √2 is between 1 and 2, then between 1.4 and 1.5, and explain how to continue on to get better approximations.
CCSS.Math.Content.8.EE.A.1
Know and apply the properties of integer exponents to generate equivalent numerical expressions. For example, 32 × 3–5 = 3–3 = 1/33 = 1/27. •
CCSS.Math.Content.8.EE.A.2
Use square root and cube root symbols to represent solutions to equations of the form x 2 = p and x 3 = p, where p is a positive rational number. Evaluate square roots of small perfect squares and cube roots of small perfect cubes. Know that √2 is irrational. •
CCSS.Math.Content.8.EE.A.3
Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one is than the other. For example, estimate the population of the United States as 3 times 108 and the population of the world as 7 times 109, and determine that the world population is more than 20 times larger. •
CCSS.Math.Content.8.EE.A.4
Perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. Use scientific notation and choose units of appropriate size for measurements of very large or very small quantities (e.g., use millimeters per year for seafloor spreading). Interpret scientific notation that has been generated by technology.