Unit 1: Dahl and Narrative (August 20th - September 22nd)
In this unit, students begin with narrative writing to quickly boost their interest and confidence and to learn the foundational skill of focus. Students then apply their new observational focus to some lively readings from Roald Dahl’s memoir Boy, and learn how to work closely with textual evidence.
Core texts we will read: Boy: Tales of Childhood by Roald Dahl
What students will do/learn:
● Students complete narrative writing exercises in which they “slow down the moment,” using observational details to focus on and develop small moments from their own experiences.
● Students learn key classroom routines, including the sharing routine, during which classmates respond to shared writing by noting one effective way the writer used language or details or evidence.
● Students read and discuss Roald Dahl’s recollection of his experiences as a schoolboy in England. As they read his memoir Boy , they analyze how he uses detail to convey the range of emotions—from excitement to fear—that he felt.
● Students write consistently throughout the unit, developing their idea or claim about the text and providing textual evidence.
● Students write an end of unit essay responding to the following prompt: Whom does Dahl describe as causing more trouble: the boys or the adults? Use details from one moment in the book to show who is really causing more trouble.
Unidad 1: Dahl y la narrativa (20 de agosto - 22 de septiembre)
En esta unidad, los estudiantes comienzan con la escritura narrativa para impulsar rápidamente su interés y confianza, y para aprender la habilidad fundamental de la concentración. Luego, los estudiantes aplican su nuevo enfoque observacional a lecturas dinámicas de las memorias de Roald Dahl, Boy, y aprenden a trabajar estrechamente con la evidencia textual.
Textos principales que leeremos: Boy: Cuentos de la infancia de Roald Dahl
Qué harán/aprenderán los estudiantes:
● Los estudiantes completan ejercicios de escritura narrativa en los que "ralentizan el momento", utilizando detalles de observación para centrarse y desarrollar pequeños momentos de sus propias experiencias.
● Los estudiantes aprenden rutinas clave en el aula, incluyendo la rutina de compartir, durante la cual los compañeros responden a la escritura compartida señalando una forma efectiva en que el escritor usó el lenguaje, los detalles o la evidencia.
● Los estudiantes leen y discuten los recuerdos de Roald Dahl sobre sus experiencias como estudiante en Inglaterra. Mientras leen sus memorias, Boy, analizan cómo usa los detalles para transmitir la gama de emociones, desde la emoción hasta el miedo, que sintió.
● Los estudiantes escriben de forma consistente a lo largo de la unidad, desarrollando su idea o afirmación sobre el texto y aportando evidencia textual.
● Los estudiantes escriben un ensayo al final de la unidad respondiendo a la siguiente pregunta: ¿A quién describe Dahl como el que causa más problemas: a los niños o a los adultos? Usen detalles de un momento del libro para mostrar quién causa realmente más problemas.
Unit 3: Unit Rates and Percentages - 19 Days (October 27 - November 21, 2025)
In the previous unit, students were introduced to ratio language and use, including ratios in the useful form ab: 1. In this unit, the term “unit rate” is introduced and students learn the importance of attending to units and specifying units in their answers. They use ratio reasoning to convert measurement units. Students make double-number lines and analyze tables for equivalent ratios, and interpret the unit rate in the context of the problem. Tables, tape diagrams, and double number line diagrams are used to help connect percentages with equivalent ratios and reinforce that percentages are rates per 100. Students solve all types of percentage problems using representations. Students connect benchmark percentages with fraction and decimal factors.
Essential Questions
What is a unit rate?
Why is it important to focus on the units for each part of unit rates?
Why are unit rates useful when solving word problems?
What do percentages represent? Why might percentages be useful?
How are percents and decimals related?
How can you use ratio reasoning to convert between measurements?
Standards
6.RP.A.3.a, 6.RP.A.3.b, 6.RP.A.3.c, 6.RP.A.3.d
---------------------------------------------------------------------------------------------------------------------------------------------------------------
Unit 2: Introducing Ratios- 23 Days (September 22 - October 24)
Unit Overview
This unit draws on work from earlier grades including two-column tables and multiplicative comparisons in 4th grade and plotting points in the coordinate plane and interpreting multiplication as scaling in 5th grade. In this unit, students encounter common ratio contexts before they experience a more formal introduction to ratio. Students use discrete diagrams and double number line diagrams as representations of ratios and equivalent ratios. They then use tables to represent equivalent ratios, laying the groundwork for analyzing functional relationships in 8th grade. Tape diagrams are used for ratios which compare same units (part-part-whole relationships). These will be used in the next unit to analyze percent problems. Note: the terms proportion and proportional relationship are not introduced until grade 7.
Essential Questions
What are some common situations where ratios are used?
What differentiates fractions from ratios?
What type of relationships do ratios describe?
Why can the relationship between two quantities be the same (constant) even though the amount of each of the two quantities gets larger or smaller?
How can ratio reasoning be used to convert measurements?
How can we use ratio tables to help solve ratio problems?
What are some representations that help us understand ratios?
Standards
6.RP.A.1, 6.RP.A.2, 6.RP.A.3.a, 6.RP.A.3.b
---------------------------------------------------------------------------------------------------------------------------------------------------------------------
Unit 1: Area and Surface Area - 24 Days (August 18 - September 19, 2025)
In this first unit, students build on earlier work with geometry and geometric measurement as they extend their reasoning about area. Students rely on their earlier work with rectangles to find the area of polygons by decomposing and rearranging shapes (or subtracting or enclosing) to make areas that they can determine. After finding areas using strategies, they then develop formulas for the areas of parallelograms and triangles and use these formulas to solve problems. Students use nets to find the surface area of polyhedra with triangular and rectangular surfaces. Students show that one figure is an identical copy of another, which will lead to the development of congruence in 8th grade. As students write and use formulas to find areas, they are encouraged to use the “dot” notation to show multiplication as the “cross” notation is confusing when x is used as a variable. (32 rather than 3 x 2)
Essential Questions
What is the relationship between the two methods: creating nets and decomposing into separate faces?
Why can two figures with the same surface area have different volumes?
Why is the formula for area of rectangles the basis for most area formulas?
What does it mean for a number to be a perfect square or a perfect cube?
Why would you want to write a formula for finding perimeter, area, surface area, or volume of a shape?
Why don’t we use x to indicate multiplication when we write variable expressions?
Standards
6.EE.A.1, 6.EE.A.2.a, 6.EE.A.2.c, 6.G.A.1, 6.G.A.4
Unidad 1: Área y Área Superficial - 24 Días (18 de agosto - 19 de septiembre de 2025)
En esta primera unidad, los estudiantes amplían su trabajo previo con la geometría y la medición geométrica al desarrollar su razonamiento sobre el área. Los estudiantes se basan en su trabajo anterior con rectángulos para encontrar el área de polígonos descomponiendo y reorganizando figuras (o restando o encerrando) para formar áreas que puedan determinar. Después de encontrar áreas usando estrategias, desarrollan fórmulas para las áreas de paralelogramos y triángulos y utilizan estas fórmulas para resolver problemas.
Los estudiantes usan redes para encontrar el área superficial de poliedros con superficies triangulares y rectangulares. También demuestran que una figura es una copia idéntica de otra, lo cual conducirá al desarrollo del concepto de congruencia en octavo grado. Al escribir y usar fórmulas para encontrar áreas, se les anima a usar la notación de “punto” para mostrar la multiplicación, ya que la notación de “cruz” puede ser confusa cuando se usa la letra x como variable. (Por ejemplo, 3·2 en lugar de 3 x 2).
Preguntas Esenciales
¿Cuál es la relación entre los dos métodos: crear redes y descomponer en caras separadas?
¿Por qué dos figuras con la misma área superficial pueden tener diferentes volúmenes?
¿Por qué la fórmula del área del rectángulo es la base de la mayoría de las fórmulas de área?
¿Qué significa que un número sea un cuadrado perfecto o un cubo perfecto?
¿Por qué sería útil escribir una fórmula para encontrar el perímetro, el área, el área superficial o el volumen de una figura?
¿Por qué no usamos la x para indicar multiplicación cuando escribimos expresiones con variables?
Estándares
6.EE.A.1, 6.EE.A.2.a, 6.EE.A.2.c, 6.G.A.1, 6.G.A.4
Unit 1: Creating Inquiries (August 20th- September 5th)
Unit Compelling Question: How can we use inquiry to co-create the history of the world around us?
In this module, students learn how to initiate an inquiry. They start by posing a question using the Question Formulation Technique (QFT). Then they learn about the difference between primary and secondary sources and explore how each type of source can help them iterate and improve their compelling question. Lastly, they use the mnemonic device CAPPS to practice making informed inferences about sources related to pandemics and epidemics, which can help them further iterate and improve their compelling question.
Unidad 1: Creación de Indagaciones (20 de agosto - 5 de septiembre)
Pregunta Imprescindible de la Unidad: ¿Cómo podemos usar la indagación para cocrear la historia del mundo que nos rodea?
En este módulo, los estudiantes aprenden a iniciar una indagación. Comienzan planteando una pregunta mediante la Técnica de Formulación de Preguntas (TFQ). Luego, aprenden la diferencia entre fuentes primarias y secundarias y exploran cómo cada tipo de fuente puede ayudarles a iterar y mejorar su pregunta imprescindible. Finalmente, utilizan la regla mnemotécnica CAPPS para practicar la realización de inferencias fundamentadas sobre fuentes relacionadas con pandemias y epidemias, lo que puede ayudarles a iterar y mejorar su pregunta imprescindible.
How can containers keep stuff from warming up or cooling down?
This unit on thermal energy transfer begins with students testing whether a new plastic cup sold by a store keeps a drink colder for longer compared to the regular plastic cup that comes free with the drink. Students find that the drink in the regular cup warms up more than the drink in the special cup. This prompts students to identify features of the cups that are different, such as the lid, walls, and hole for the straw, that might explain why one drink warms up more than the other. Students investigate the different cup features they conjecture are important to explaining the phenomenon, starting with the lid. They model how matter can enter or exit the cup via evaporation However, they find that in a completely closed system, the liquid inside the cup still changes temperature. This motivates the need to trace the transfer of energy into the drink as it warms up. Through a series of lab investigations and simulations, students find that there are two ways to transfer energy into the drink: (1) the absorption of light and (2) thermal energy from the warmer air around the drink. They are then challenged to design their own drink container that can perform as well as the store-bought container, following a set of design criteria and constraints. Through these investigations students: build on what they know about the particle nature of matter from 5th grade to develop a particle model of solids, liquids, and gases that include both structure and movement of particles as it relates to the temperature of the substance. plan and carry out investigations to systematically test the different parts of the cup system, tracking the flow of matter and energy into or out of the cup system. develop a model of temperature as the average kinetic energy of a group of particles. model the transfer of energy from light to kinetic energy of particles when light is absorbed. model thermal energy transfer between substances through particle collisions, or conduction, to change the average particle motion in a substance. revise their models to include factors that minimize energy transfer by reducing the absorption of light and decreasing the opportunities for particle collisions. apply what they have learned about features that can slow energy transfer to design, build, test, and revise a cup system to keep a drink cold. Building Toward NGSS Performance Expectations
MS-PS1-4: Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed.
MS-PS3-3: Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
MS-PS3-4: Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass and the change in the average kinetic energy of the particles as measured by the temperature of the sample.
MS-PS3-5: Construct, use, and present arguments to support the claim that when the motion energy of an object changes, energy is transferred to or from the object.
MS-PS4-2: Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
MS-ETS1-4: Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.
This unit on light and matter begins with a perplexing phenomenon of one-way mirrors and how this material can act as both a mirror and a window at the same time. Students directly observe and investigate the one-way mirror phenomenon using a scaled box model built from two combined boxes with a flashlight in one box, darkness in the other box, and a one-way mirror in between the two. Through this initial investigation, students figure out that the one-way mirror acts like a mirror on the light side of the system and a window on the dark side of the system. This experience prompts students to wonder: Why do we sometimes see different things when looking at the same object?
Students articulate a set of classroom norms to promote a safe and equitable classroom culture that they will use as they investigate and explain phenomena. They learn how to ask different kinds of questions about the phenomenon and how to model what they figure out to explain the phenomenon. Through their investigations, students figure out that the one-way mirror transmits about half the light and reflects about half the light that shines on it due to its microscale structures. Students engage in productive dialogue with their peers to come to consensus about how to model the unseen light interactions with the people and one-way mirror. Students then convince themselves that on the light side of the system, the one-way mirror reflects light as the strongest input to the eye, which is why a person sees their own reflection on this side. On the dark side of the system, the transmitted light from the light side is the strongest input to the eye, therefore why a person can see through to the light side. Using these ideas, students explain how light on either side of a material changes the light input entering the eyes, which affects what we see. Students apply these science ideas to explain why window glass can act like a one-way mirror in certain light conditions.
Through these investigations, students will do the following:
Develop a shared set of classroom norms to guide their work together.
Ask questions about the one-way mirror phenomenon that they investigate in the classroom by (1) manipulating light in the scaled box model, (2) measuring transmitted and reflected light off different materials, and (3) obtaining information from readings and videos.
Agree upon and develop models to explain how light interacts with the one-way mirror, glass, regular mirrors, the eye, and the brain.
Use a model to explain how the one-way mirror acts like a mirror on the light side of the system and acts like a window on the dark side of the system.
Apply to an everyday phenomenon the science ideas and models developed for explaining the one-way mirror.
MS-PS4-2:
Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.
MS-LS1-8:
Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.
Esta unidad sobre la luz y la materia comienza con un fenómeno desconcertante: los espejos unidireccionales y cómo este material puede actuar como espejo y ventana al mismo tiempo. Los estudiantes observan e investigan directamente el fenómeno del espejo unidireccional utilizando un modelo a escala construido con dos cajas combinadas: una caja con una linterna (luz) y otra en oscuridad, separadas por un espejo unidireccional.
A través de esta investigación inicial, los estudiantes descubren que el espejo unidireccional actúa como espejo en el lado iluminado del sistema y como ventana en el lado oscuro. Esta experiencia los lleva a preguntarse: ¿Por qué a veces vemos cosas diferentes al observar el mismo objeto?
Los estudiantes establecen un conjunto de normas para el aula con el fin de promover una cultura segura y equitativa, normas que usarán mientras investigan y explican fenómenos. Aprenden a formular diferentes tipos de preguntas sobre el fenómeno y a modelar lo que descubren para explicar lo que observan.
Durante sus investigaciones, los estudiantes descubren que el espejo unidireccional transmite aproximadamente la mitad de la luz y refleja la otra mitad debido a sus estructuras microscópicas. Participan en diálogos productivos con sus compañeros para llegar a un consenso sobre cómo modelar las interacciones invisibles de la luz con las personas y el espejo unidireccional.
Luego, los estudiantes comprenden que en el lado iluminado del sistema, el espejo unidireccional refleja la luz, lo que representa el estímulo más fuerte que llega al ojo, razón por la cual una persona ve su propio reflejo. En el lado oscuro del sistema, la luz transmitida desde el lado iluminado es la entrada más fuerte al ojo, por lo tanto, una persona puede ver hacia el lado iluminado.
Usando estas ideas, los estudiantes explican cómo la luz en cada lado de un material afecta la luz que entra en los ojos, lo que a su vez influye en lo que vemos. Aplican estos conceptos científicos para explicar por qué el vidrio de una ventana puede actuar como un espejo unidireccional bajo ciertas condiciones de iluminación.
A través de estas investigaciones, los estudiantes harán lo siguiente:
Desarrollar un conjunto compartido de normas para guiar su trabajo en equipo.
Formular preguntas sobre el fenómeno del espejo unidireccional que investigan en el aula mediante:
La manipulación de la luz en el modelo a escala.
La medición de la luz transmitida y reflejada en diferentes materiales.
La obtención de información a través de lecturas y videos.
Acordar y desarrollar modelos para explicar cómo la luz interactúa con el espejo unidireccional, el vidrio, los espejos normales, el ojo y el cerebro.
Utilizar un modelo para explicar cómo el espejo unidireccional actúa como espejo en el lado iluminado del sistema y como ventana en el lado oscuro.
Aplicar a un fenómeno cotidiano las ideas científicas y los modelos desarrollados para explicar el espejo unidireccional.
Estándares de Desempeño NGSS que se esperan desarrollar
MS-PS4-2:
Desarrollar y usar un modelo para describir que las ondas son reflejadas, absorbidas o transmitidas a través de diferentes materiales.
MS-LS1-8:
Reunir y sintetizar información sobre cómo los receptores sensoriales responden a estímulos enviando mensajes al cerebro para generar un comportamiento inmediato o almacenarse como recuerdos.
¿Cómo veo el boletín de calificaciones de los estudiantes?