Bates, S., Phillips, A. C., Clark, P. A., Stott, F., Peters, G., Ludwig, R. L., & Vousden, K. H. (1998). p14ARF links the tumour suppressors RB and p53. Nature, 395(6698), 124–125. https://doi.org/10.1038/25867
Basu, S., & Murphy, M. E. (2016). Genetic Modifiers of the p53 Pathway. Cold Spring Harbor perspectives in medicine, 6(4), a026302. https://doi.org/10.1101/cshperspect.a026302
Bell, S., Klein, C., Müller, L., Hansen, S., & Buchner, J. (2002). p53 contains large unstructured regions in its native state. Journal of molecular biology, 322(5), 917–927. https://doi.org/10.1016/s0022-2836(02)00848-3
Boehme, K. A., & Blattner, C. (2009). Regulation of p53--insights into a complex process. Critical reviews in biochemistry and molecular biology, 44(6), 367–392. https://doi.org/10.3109/10409230903401507
Blagosklonny M. V. (2002). P53: an ubiquitous target of anticancer drugs. International journal of cancer, 98(2), 161–166. https://doi.org/10.1002/ijc.10158
Brázda, V., & Fojta, M. (2019). The Rich World of p53 DNA Binding Targets: The Role of DNA Structure. International journal of molecular sciences, 20(22), 5605. https://doi.org/10.3390/ijms20225605
Chantarawong, W., Kuncharoen, N., Tanasupawat, S., & Chanvorachote, P. (2019). Lumichrome Inhibits Human Lung Cancer Cell Growth and Induces Apoptosis via a p53-Dependent Mechanism. Nutrition and cancer, 71(8), 1390–1402. https://doi.org/10.1080/01635581.2019.1610183
Chen, Y., Zhang, X., Dantas Machado, A. C., Ding, Y., Chen, Z., Qin, P. Z., Rohs, R., & Chen, L. (2013). Structure of p53 binding to the BAX response element reveals DNA unwinding and compression to accommodate base-pair insertion. Nucleic acids research, 41(17), 8368–8376. https://doi.org/10.1093/nar/gkt584
Chen, G., Zhou, T., Liu, Y., & Yu, Z. (2018). Combinatory inhibition of TRIM65 and MDM2 in lung cancer cells. Biochemical and biophysical research communications, 506(3), 698–702. https://doi.org/10.1016/j.bbrc.2018.10.130
Cho, Y., Gorina, S., Jeffrey, P. D., & Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science (New York, N.Y.), 265(5170), 346–355. https://doi.org/10.1126/science.8023157
Clore, G. M., Omichinski, J. G., Sakaguchi, K., Zambrano, N., Sakamoto, H., Appella, E., & Gronenborn, A. M. (1994). High-resolution structure of the oligomerization domain of p53 by multidimensional NMR. Science (New York, N.Y.), 265(5170), 386–391. https://doi.org/10.1126/science.8023159
Demirhan, O., Taştemir, D., Hastürk, S., Kuleci, S., & Hanta, I. (2010). Alterations in p16 and p53 genes and chromosomal findings in patients with lung cancer: fluorescence in situ hybridization and cytogenetic studies. Cancer epidemiology, 34(4), 472–477. https://doi.org/10.1016/j.canep.2010.03.018
Denissenko, M. F., Pao, A., Tang, M., & Pfeifer, G. P. (1996). Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science (New York, N.Y.), 274(5286), 430–432. https://doi.org/10.1126/science.274.5286.430
Fang, S., Jensen, J. P., Ludwig, R. L., Vousden, K. H., & Weissman, A. M. (2000). Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. The Journal of biological chemistry, 275(12), 8945–8951. https://doi.org/10.1074/jbc.275.12.8945
Farmer, G., Bargonetti, J., Zhu, H., Friedman, P., Prywes, R., & Prives, C. (1992). Wild-type p53 activates transcription in vitro. Nature, 358(6381), 83–86. https://doi.org/10.1038/358083a0
Guo, T. & Gu, C.. (2017). New insights into regulation of p53 protein degradation. International Journal of Clinical and Experimental Medicine. 10. 8773-8779.
Guo, R., Li, Y., Xue, Y., Chen, Y., Li, J., Deng, X., Su, J., Liu, Y., & Sun, L. (2020). SIRT3 increases cisplatin sensitivity of small-cell lung cancer through apoptosis. Gene, 745, 144629. https://doi.org/10.1016/j.gene.2020.144629
Hainaut, P., Olivier, M., & Pfeifer, G. P. (2001). TP53 mutation spectrum in lung cancers and mutagenic signature of components of tobacco smoke: lessons from the IARC TP53 mutation database. Mutagenesis, 16(6), 551–556. https://doi.org/10.1093/mutage/16.6.551
Hainaut, P., & Pfeifer, G. P. (2001). Patterns of p53 G-->T transversions in lung cancers reflect the primary mutagenic signature of DNA-damage by tobacco smoke. Carcinogenesis, 22(3), 367–374. https://doi.org/10.1093/carcin/22.3.367
Hafner, A., Bulyk, M. L., Jambhekar, A., & Lahav, G. (2019). The multiple mechanisms that regulate p53 activity and cell fate. Nature reviews. Molecular cell biology, 20(4), 199–210. https://doi.org/10.1038/s41580-019-0110-x
Hao, X. L., Han, F., Zhang, N., Chen, H. Q., Jiang, X., Yin, L., Liu, W. B., Wang, D. D., Chen, J. P., Cui, Z. H., Ao, L., Cao, J., & Liu, J. Y. (2019). TC2N, a novel oncogene, accelerates tumor progression by suppressing p53 signaling pathway in lung cancer. Cell death and differentiation, 26(7), 1235–1250. https://doi.org/10.1038/s41418-018-0202-8
Haupt, Y., Maya, R., Kazaz, A., & Oren, M. (1997). Mdm2 promotes the rapid degradation of p53. Nature, 387(6630), 296–299. https://doi.org/10.1038/387296a0
Hecht S. S. (1999). Tobacco smoke carcinogens and lung cancer. Journal of the National Cancer Institute, 91(14), 1194–1210. https://doi.org/10.1093/jnci/91.14.1194
Hollstein, M., Sidransky, D., Vogelstein, B., & Harris, C. C. (1991). p53 mutations in human cancers. Science (New York, N.Y.), 253(5015), 49–53. https://doi.org/10.1126/science.1905840
Hussain, S. P., Hofseth, L. J., & Harris, C. C. (2001). Tumor suppressor genes: at the crossroads of molecular carcinogenesis, molecular epidemiology and human risk assessment. Lung cancer (Amsterdam, Netherlands), 34 Suppl 2, S7–S15. https://doi.org/10.1016/s0169-5002(01)00339-7
Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., & Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science (New York, N.Y.), 274(5289), 948–953. https://doi.org/10.1126/science.274.5289.948
Li, Y., Ma, C., Zhou, T., Liu, Y., Sun, L., & Yu, Z. (2016). TRIM65 negatively regulates p53 through ubiquitination. Biochemical and biophysical research communications, 473(1), 278–282. https://doi.org/10.1016/j.bbrc.2016.03.09
Liu, G., Pei, F., Yang, F., Li, L., Amin, A. D., Liu, S., Buchan, J. R., & Cho, W. C. (2017). Role of Autophagy and Apoptosis in Non-Small-Cell Lung Cancer. International journal of molecular sciences, 18(2), 367. https://doi.org/10.3390/ijms18020367
Levy, N., Yonish-Rouach, E., Oren, M., & Kimchi, A. (1993). Complementation by wild-type p53 of interleukin-6 effects on M1 cells: induction of cell cycle exit and cooperativity with c-myc suppression. Molecular and cellular biology, 13(12), 7942–7952. https://doi.org/10.1128/mcb.13.12.7942
Mazur, M., & Glickman, B. W. (1988). Sequence specificity of mutations induced by benzo[a]pyrene-7,8-diol-9,10-epoxide at endogenous aprt gene in CHO cells. Somatic cell and molecular genetics, 14(4), 393–400. https://doi.org/10.1007/BF01534647
Miller, C. W., Simon, K., Aslo, A., Kok, K., Yokota, J., Buys, C. H., Terada, M., & Koeffler, H. P. (1992). p53 mutations in human lung tumors. Cancer research, 52(7), 1695–1698.
Mogi, A., & Kuwano, H. (2011). TP53 mutations in nonsmall cell lung cancer. Journal of biomedicine & biotechnology, 2011, 583929. https://doi.org/10.1155/2011/583929
Molina-Vila, M. A., Bertran-Alamillo, J., Gascó, A., Mayo-de-las-Casas, C., Sánchez-Ronco, M., Pujantell-Pastor, L., Bonanno, L., Favaretto, A. G., Cardona, A. F.,
Vergnenègre, A., Majem, M., Massuti, B., Morán, T., Carcereny, E., Viteri, S., & Rosell, R. (2014). Nondisruptive p53 mutations are associated with shorter survival in patients with advanced non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 20(17), 4647–4659. https://doi.org/10.1158/1078-0432.CCR-13-2391
Moll, U. M., & Petrenko, O. (2003). The MDM2-p53 interaction. Molecular cancer research : MCR, 1(14), 1001–1008.
Pan, M., & Blattner, C. (2021). Regulation of p53 by E3s. Cancers, 13(4), 745. https://doi.org/10.3390/cancers13040745
Ryberg, D., Kure, E., Lystad, S., Skaug, V., Stangeland, L., Mercy, I., Børresen, A. L., & Haugen, A. (1994). p53 mutations in lung tumors: relationship to putative susceptibility markers for cancer. Cancer research, 54(6), 1551–1555.
Stapelfeld, C., Dammann, C., & Maser, E. (2020). Sex-specificity in lung cancer risk. International journal of cancer, 146(9), 2376–2382. https://doi.org/10.1002/ijc.32716
Sabapathy, K., & Lane, D. P. (2019). Understanding p53 functions through p53 antibodies. Journal of molecular cell biology, 11(4), 317–329. https://doi.org/10.1093/jmcb/mjz010
Smith, L. E., Denissenko, M. F., Bennett, W. P., Li, H., Amin, S., Tang, M., & Pfeifer, G. P. (2000). Targeting of lung cancer mutational hotspots by polycyclic aromatic hydrocarbons. Journal of the National Cancer Institute, 92(10), 803–811. https://doi.org/10.1093/jnci/92.10.803
Subramanian, M., Jones, M. F., & Lal, A. (2013). Long Non-Coding RNAs Embedded in the Rb and p53 Pathways. Cancers, 5(4), 1655–1675. https://doi.org/10.3390/cancers5041655
Talib, W. H., & Al Kury, L. T. (2018). Parthenolide inhibits tumor-promoting effects of nicotine in lung cancer by inducing P53 - dependent apoptosis and inhibiting VEGF expression. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 107, 1488–1495. https://doi.org/10.1016/j.biopha.2018.08.139
Tanaka, T., Watanabe, M., & Yamashita, K. (2018). Potential therapeutic targets of TP53 gene in the context of its classically canonical functions and its latest non-canonical functions in human cancer. Oncotarget, 9(22), 16234–16247. https://doi.org/10.18632/oncotarget.24611
Tang, X., Li, Y., Liu, L., Guo, R., Zhang, P., Zhang, Y., Zhang, Y., Zhao, J., Su, J., Sun, L., & Liu, Y. (2020). Sirtuin 3 induces apoptosis and necroptosis by regulating mutant p53 expression in small‑cell lung cancer. Oncology reports, 43(2), 591–600. https://doi.org/10.3892/or.2019.7439
Toyooka, S., Tsuda, T., & Gazdar, A. F. (2003). The TP53 gene, tobacco exposure, and lung cancer. Human mutation, 21(3), 229–239. https://doi.org/10.1002/humu.10177
Vähäkangas, K. H., Bennett, W. P., Castrén, K., Welsh, J. A., Khan, M. A., Blömeke, B., Alavanja, M. C., & Harris, C. C. (2001). p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer research, 61(11), 4350–4356.
van Lookeren Campagne, M., & Gill, R. (1998). Tumor-suppressor p53 is expressed in proliferating and newly formed neurons of the embryonic and postnatal rat brain: comparison with expression of the cell cycle regulators p21Waf1/Cip1, p27Kip1, p57Kip2, p16Ink4a, cyclin G1, and the proto-oncogene Bax. The Journal of comparative neurology, 397(2), 181–198. https://doi.org/10.1002/(sici)1096-9861(19980727)397:2<181::aid-cne3>3.0.co;2-x
Vogelstein, B., Lane, D., & Levine, A. J. (2000). Surfing the p53 network. Nature, 408(6810), 307–310. https://doi.org/10.1038/35042675
Wadowska, K., Bil-Lula, I., Trembecki, Ł., & Śliwińska-Mossoń, M. (2020). Genetic Markers in Lung Cancer Diagnosis: A Review. International journal of molecular sciences, 21(13), 4569. https://doi.org/10.3390/ijms2113456
Xiong, Y., Wang, L., Wang, S., Wang, M., Zhao, J., Zhang, Z., Li, X., Jia, L., & Han, Y. (2018). SIRT3 deacetylates and promotes degradation of P53 in PTEN-defective non-small cell lung cancer. Journal of cancer research and clinical oncology, 144(2), 189–198. https://doi.org/10.1007/s00432-017-2537-9
Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A., & Oren, M. (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature, 352(6333), 345–347. https://doi.org/10.1038/352345a0
Interactive p53 model: https://p53.iarc.fr/structureanalysis.aspx
3D display models for different proteins: https://www.uniprot.org/
How p53 works video: https://www.youtube.com/watch?v=6SjkIYClAkQ
p14-p53 pathway: Moulder, David & Hatoum, Diana & Tay, Enoch & Lin, Yiguang & Mcgowan, Eileen. (2018). The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer?. Cancers. 10. 189. 10.3390/cancers10060189.
14-p16-p53 pathway: Cooper, David. (2005). Somatic Mutation in Lung Cancer. 10.1007/3-540-26954-1_4.
Transversions Video: https://www.youtube.com/watch?v=gHp0RxZE930
Lung Cancer and wild type vs mutant p53 statistical chart: Smoking, p53 and Lung Cancer, Gibbons et al.
BPDE p53 pathway interaction: Burdick, Andrew & Ivnitski-Steele, Irena & Lauer, Fredine & Burchiel, Scott. (2006). PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells. Carcinogenesis. 27. 2331-40. 10.1093/carcin/bgl083.
Apoptosis: Programmed cell death
Assay: An investigative procedure in laboratory medicine, mining, pharmacology, environmental biology and molecular biology for qualitatively assessing or quantitatively measuring the presence, amount, or functional activity of a target entity
Benzopyrene-7,8-diol-9,10-epoxide (BPDE): A five-ring polycyclic aromatic hydrocarbon that is mutagenic and highly carcinogenic
Kinase: Proteins that facilitate the addition of phosphate groups to other proteins
Malignant: Very virulent or infectious
Proteasome: Protein complexes which degrade unneeded or damaged proteins by proteolysis, a chemical reaction that breaks peptide bonds
Ubiquitin: A small protein that exists in all eukaryotic cells. It performs its myriad functions through conjugation to a large range of target proteins
Ubiquitylation (also known as Ubiquitination or Ubiquitinylation): An enzymatic post-translational modification in which a ubiquitin protein is attached to a substrate protein
Western Blot Analysis: The western blot, or western blotting, is a widely used analytical technique in molecular biology and immunogenetics to detect specific proteins in a sample of tissue homogenate or extract
Animesh Dali | DePauw University