Published papers
Interaction of geophysical flows with sea ice dynamics, with T. Binz and M. Hieber, NoDEA Nonlinear Differential Equations Appl., Vol. 33 (2026), no. 2, Paper No. 35. Link to publisher
Well-posedness of Hibler's parabolic-hyperbolic sea ice model, J. Evol. Equ., Vol. 25 (2025), no. 3, Paper No. 82. Link to publisher
Interaction of liquid crystals with a rigid body, with T. Binz, M. Hieber and A. Roy, Trans. Amer. Math. Soc., Vol. 377 (2024), no. 11, pp. 8049 - 8090. Link to publisher, arXiv
Rigorous analysis of the interaction problem of sea ice with a rigid body, with T. Binz and M. Hieber, Math. Ann., Vol. 389 (2024), no. 1, pp. 591 - 625. Link to publisher
Time periodic solutions to Hibler's sea ice model, with M. Hieber, Nonlinearity, Vol. 36 (2023), no. 6, pp. 3109 - 3124. Link to publisher
Strong periodic solutions to quasilinear parabolic equations: an approach by the Da Prato-Grisvard theorem, with M. Hieber, Bull. Lond. Math. Soc., Vol. 55 (2023), no. 4, pp. 1971 - 1993. Link to publisher
Rigorous analysis and dynamics of Hiber's sea ice model, with K. Disser, R. Haller-Dintelmann and M. Hieber, J. Nonlinear Sci., Vol. 32 (2022), no. 4, Paper No. 50. Link to publisher
Preprints
Moisture dynamics with phase changes coupled to heat-conducting, compressible fluids, with M. Hieber, L. Ma and T. Zöchling. Accepted for publication in Math. Models Methods Appl. Sci. arXiv:2512.14931
Three-dimensional Navier-Stokes-Biot coupling via a moving reticular plate interface: existence of weak solutions, with S. Čanić and B. Muha. arXiv:2508.14310
Strong time-periodic solutions to a multilayered fluid-structure interaction problem, with C. Mîndrilă and A. Roy. arXiv:2507.07918
Global strong well-posedness of the CAO-problem introduced by Lions, Temam and Wang, with T. Binz, M. Hieber and T. Zöchling. arXiv:2505.11952
Strong well-posedness for a stochastic fluid-rigid body system via stochastic maximal regularity, with A. Roy. arXiv:2504.14676
Dynamics of the general Q-tensor model interacting with a rigid body, with M. Hieber and A. Roy. Accepted for publication in SIAM J. Math. Anal. arXiv:2501.01181
PhD thesis
Geophysical Flow Models: An Approach by Quasilinear Evolution Equations. TU Darmstadt, 2024. Link
Conference Proceedings
Finite energy weak solutions to a multilayered 3D fluid-poroelastic structure interaction problem. Mathematical Advances in Geophysical Fluid Dynamics. Oberwolfach Workshop 2520, 2025, pp. 1230 - 1231. In: Oberwolfach Rep., Vol. 22 (2025), no. 2, pp. 1215 - 1270. Link
Hibler's viscous-plastic sea ice model: rigorous analysis, time periodic solutions and interaction with a rigid body. Mathematical Advances in Geophysical Fluid Dynamics. Oberwolfach Workshop 2246, 2022, pp. 2985 - 2988. In: Oberwolfach Rep., Vol. 19 (2022), no. 4, pp. 2961 - 3003. Link