thesiscitedreferences

Thesis Cited References

MD Thesis Cited (18 Refs)

Barker DR, Diana LM, 1974. Simple method for fitting data when both variables have uncertainties. Am. J. Phys. 42:224-226.

Chow JC, Watson JG, Lowenthal DH, Solomon PA, Margliano KL, Ziman SD, Richards LW, 1992. PM10 source apportionment in California's San Joaquin Valley. AE 26A:3335-3354.

Copper JA, Watson JG, 1980. Receptor oriented methods of air particulate source apportionment. JAPCA 30:1116-1125.

Currie LA, Gerlach RW, Lewis CW, Balfour WD, Copper JA, Dattner SL, De Cesar RT, Gordon GE, Heisler SL, Hopke PK, Shah JJ, Thurston GD, Williamson HJ, 1984. Interlaborator comparison of source apportionment procedures: results for simulated data sets. AE 18:1517-1537.

Dzubay TG, Stevens RK, Balfour WD, Williamson HJ, Copper JA, Core JE, De Cesar RT, Crutcher ER, Dattner SL, Davis BL, Heisler SL, Shah JJ, Hopke PK, Johnson DL, 1984. Houston interlaboratory comparison of receptor model results for aerosol. AE 18:1555-1566.

Dzubay TG, Stevens RK, Gordon GE, Olmez I, Sheffieid AE, Coutney WJ, 1988. A composite receptor method applied to Philadelphia aerosol. Environ. Sci. Technol. 22:47-52.

Gordon GE, Pierson WR, Daisey JM, Copper JA, Watson JG, Cass JR, 1984. Considerations for design of source apportionment studies. AE 18:1567-1582.

Henry RC, Lewis CW, Hopke PK, Williamson HJ, 1984. Review of receptor model fundamentals. AE 18:1507-1515.

Javitz HS, Watson JG, Gertin JP, Mueller PK, 1988. Results of a receptor modeling feasibility study. JAPCA 38:661-667.

Kasahara M, Choi KC, Takahashi K, 1990. Source contribution of atmospheric aerosols in Japan by chemical mass balance method. AE 24A:457-466.

Kowalczyk GS, Choquette CE, Gordon GE, 1978. Chemical element balances and identification of air pollution sources in Washington, D.C. AE 12:1143-1153.

Kowalczyk GS, Gordon GE, Rheingrover SW, 1982. Identification of atmospheric particulate sources in Washington, D.C., using chemical element balances. Environ. Sci. Technol. 16:79-90.

Olmez I, Sheffield AE, Gordon GE, Houck JE, Pritchett LC, Copper JJ, Dzubay TG, Bennett RL, 1988. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. JAPCA 38:1392-1402.

Scheff PA, Valiozis C, 1990. Characterization and source identification of respirable particulate matter in Athens, Greece. AE 24A:203-211.

Stevens RK, Pace TG, 1984. Overview of the mathematical and empirical receptor models workshop ( Quail Roost II ). AE 18:1499-1506.

Wang D, Hopke PK, 1989. The use of constrained least-squares to solve the chemical mass balance problem. AE 23:2143-2150.

Wang S, Larson T, 1993. Ambient error weighted partial least-squares regression: a new receptor model. Analytica Chimica Acta 333-337.

Watson JG, Copper JA, Huntzicker JJ, 1984. The effective variance weighting for least squares calculations applied to the mass balance receptor model. AE 18:1347-1355.

PHD Thesis Cited (67 Refs)

Anttila P, Paatero P, Tapper U, Jarvinen O, 1995. Source identification of bulk wet deposition in Finland by positive matrix factorization. AE 29:1705-1718.

Barker DR, Diana LM, 1974. Simple method for fitting data when both variables have uncertainties. The American Journal of Physics, 42:224-226.

Brook JR, Dann TF, Burnett RT, 1997. The relationship among TSP, PM10, PM2.5, and inorganic constituents of atmospheric particulate matter at multiple Canadian locations. JAWMA 47:2-19.

Cadle SH, Groblicki PJ, 1982. An evaluation of methods for the determination of organic and elemental carbon in particulate samples. In: Wolff GT, Klimisch RL, editors. Particulate carbon-atmospheric life cycle. pp. 89-109. Plenum Press, New York, USA.

Carmichael GR, Zhang Y, Chen LL, Hong MS, Ueda H, 1996. Seasonal variation of aerosol composition at Cheju island, Korea. AE 30:2407-2416.

Chan CC, Nien CK, Hwang JS, 1996. Receptor modeling of VOCs, CO, NOx, and THC in Taipei. AE 30:25-33.

Chan YC, Simpson RW, Mctainsh GH, Vowles PD, Cohan DD, Bailey GM, 1999. Source apportionment of PM2.5 and PM10 aerosols in Brisbane (Australia) by receptor modelling. AE 33:3251-3268.

Chan YC, Simpson RW, Mctainsh GH, Vowles PD, Cohen DD, Bailey GM, 1997. Characterisation of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. AE 31:3773-4785.

Chang SN, Hopke PK, Rheingrover SW, Gordon GE, 1982. Target transformation factor analysis of wind-trajectory selected samples. Paper No. 81-21.1, Air Pollution Control Association, Pittsburgh, PA, USA, 14 pp.

Chen KS, Lin CF, Chou YM, 2001. Determination of source contributions to ambient PM2.5 in Kaohsiung, Taiwan, using a receptor model. JAWMA 51:489-498.

Chen WC, Wang CS, Wei CC, 1997. An assessment of source contributions to ambient aerosols in central Taiwan. JAWMA 47:501-509.

Cheng MD, Hopke PK, 1989. Identification of markers for chemical mass balance receptor model. AE 23:1373-1384.

Cheng MT, Tsai YI, 2000. Characterization of visibility and atmospheric aerosols in urban, suburban and remote areas. The Science of the Total Environment 263:101-114.

Cheng MT, Huang CY, Cheng JM, Kuo CY, Wang CF, 2001. Source characterization of PM2.5 and PM10 emissions from oil-fired boilers in central Taiwan. The Proceeding of 2001 Conference on Aerosol Science and Technology 55-58.

Chio CP, Cheng MT, Wang CF, 2004. Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal Areas, Taiwan. AE 38:6893-6905.

Chow JC, Fairley D, Watson JG, DeMandel R, Fujita EM, Lowenthal DH, Lu Z, Frazier CA, Long G, Cordova J, 1995. Source apportionment of wintertime PM10 at San Jose, Calif. Journal of Environmental Engineering 378-387.

Chow JC, Liu CS, Cassmassi J, Watson JG, Lu Z, Pritchett LC, 1992. A neighborhood-scale study of PM10 source contributions in Rubidoux, California. AE 26A:693-706.

Cornille P, Maenhaut W, Pacyna JM, 1990. Sources and characteristics of the atmospheric aerosol near Damascus, Syria. AE 24A:1083-1093.

Countess RJ, Wolff GT, Cadle SH, 1980. The Denver winter aerosol: a comprehensive chemical characterization. JAPCA 30:1194-1200.

Crutcher ER, 1982. Light microscopy as an analytical approach to receptor modeling. In: Dattner SL, Hopke PK, editors, Receptor models applied to contemporary pollution problems. Proceedings No. SP-48, pp. 266-284, Air Pollution Control Association, Pittsburgh, PA, USA.

Draxler RR, Rolph GD, 2003. HYSPLIT (HYbrid single-particle Lagrangian integrated trajectory) model access via NOAA ARL READY Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD.

Dzubay TG, Mamane Y, 1989. Use of electron microscopy data in receptor models for PM10. AE 23:467-476.

Eldred RA, Cahill TA, Flocchini RG, 1997. Composition of PM2.5 and PM10 aerosols in the IMPROVE network. JAWMA 47:194-203.

Fang GC, Chang CN, Wu YS, Fu PPC, Yang CJ, Chen CD, Chang SC, 2002. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998-2001. AE 36:1921-1928.

Ferrer N, Perez JJ, 1990. Determination of sources of atmospheric aerosol in the neighborhood of Barcelona based on receptor models. AE 24B:181-184.

Friedlander SK, 1973. Chemical element balances and identification of air pollution sources. ES&T 7:235-240.

Gertler AW, Lowenthal DA, Coulombe WG, 1995. PM10 source apportionment study in Bullhead city, Arizona. JAWMA 45:75-82.

Harrison RM, Smith DJ, Pio CA, Castro LM, 1997. Comparative receptor modelling study of airborne particulate pollutants in Birmingham (United Kingdom), Coimbra (Portugal) and Lahore (Pakistan). AE 31:3309-3321.

Henry RC, Hidy GM, 1979. Multivariate analysis of particulate sulfate and other air quality variables by principal components - Part I. annual data from Los Angeles and New York. AE 13:1581-1596.

Henry RC, Lewis CW, Hopke PK, Williamson HJ, 1984. Review of receptor model fundamentals, AE 18:1507-1515.

Hidy GM, Friedlander SK, 1972. The Nature of the Los Angeles aerosol, 2nd IUAPPA Clean Air Congress, Washington, DC, USA.

Ho KF, Lee SC, Chow JC, Watson JG, 2003. Characterization of PM10 and PM2.5 source profiles for fugitive dust in Hong Kong. AE 37:1023-1032.

Hopke PK, Casuccio GS, 1991. Scanning electron microscopy. In: Hopke PK, editor, Receptor modeling for air quality management. pp. 149-212, Elsevier Science Publishing company Inc., New York, USA.

Hopke PK, Gladney ES, Gorden GE, Zoller WH, Jones AG, 1976. The use of multivariate analysis to identify sources of selected elements in Boston urban aerosol. AE 10:1015-1025.

Houck JE, 1991. Source sampling for receptor modeling. In: Hopke PK, editor, Receptor modeling for air quality management. pp. 45-82, Elsevier Science Publishing company Inc., New York, USA.

Lee E, Chan CK, Paatero P, 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. AE 33:3201-3212.

Lowenthal DH, Borys RD, Mosher BW, 1997. Sources of pollution aerosol at Dye 3, Greenland. AE 31:3707-3717.

Mason B, 1966. Principles of geochemistry. 3rd Edition, Wiley, New York, USA.

Miller MS, Friedlander SK, Hidy GM, 1972. A chemical element Balance for the Pasadena aerosol. Journal of Colloid Interface Science 39:165-176.

Miranda J, Andrade E, Lopez-Suarez A, Ledesma R, Cahill TA, Wakabayashi PH, 1996. A receptor model for atmospheric aerosols from a southwestern site in Mexico City. AE 30:3471-3479.

Mishra VK, Kim KH, Kang CH, Choi KC, 2004. Wintertime sources and distribution of airborne Lead in Korea. AE 38:2653-2664.

Mood AM, Graybill FA, Boes DC, 1976. Introduction to the theory of statistics. McGraw-Hill Book Company, New York, USA.

Ohta S, Okita T, 1990. A chemical characterization of atmospheric aerosol in Sapporo. AE 24A:815-822.

Ohta S, Hori M, Yamagata S, Murao N, 1998. Chemical characterization of atmospheric fine particles in Sapporo with determination of water content. AE 32:1021-1025.

Okamoto S, Hayashi M, Nakajima M, Kainuma Y, Shiozawa K, 1990. A factor analysis-multiple regression model for source apportionment of suspended particulate matter. AE 24A:2089-2097.

Olmez I, Sheffield AE, Gordon GE, Houck JE, Pritchett LC, Cooper JA, Dzubay TG, Bennett RL, 1988. Compositions of particles from selected sources in Philadelphia for receptor modeling applications. JAPCA 38:1392-1402.

Pio CA, Santos IM, Anacleto TD, Nunes TV, Leal RM, 1991. Particulate and gaseous air pollutant levels at the Portuguese west coast. AE 25A:669-680.

Rahn KA, 1976. Silicon and Aluminum in atmospheric aerosols: crust-air fractionation ? AE 10:597-601.

Rojas CM, Artaxo P, Grieken RV, 1990. Aerosols in Santiago De Chile: a study using receptor modeling with X-Ray fluorescence and single particle analysis. AE 24B:227-241.

Rolph GD, 2003. Real-time environmental applications and display system (READY) Website (http://www.arl.noaa.gov/ready/hysplit4.html), NOAA Air Resources Laboratory, Silver Spring, MD.

Salvador P, Artinano B, Alonso DG, Querol X, Alastuey A, 2004. Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. AE 38:435-447.

Sisler JF, Malm WC, 1994. The relative importance of soluble aerosols to spatial and seasonal trends of impaired visibility in the United State. AE 28:851-862.

Thurston GD, Lioy PJ, 1987. Receptor modeling and aerosol transport. AE 21:687-698.

Tsai YI, Cheng MT, 1999. Visibility and aerosol chemical compositions near the coastal area in central Taiwan. The Science of the Total Environment 231:37-51.

Tsai YI, Cheng MT, 2004. Characterization of chemical species in atmospheric aerosols in a metropolitan basin. Chemosphere 54:1171-1181.

Tsuang BJ, Chao JP, 1997. Development of a circuit model to describe the advection-diffusion equation for air pollution. AE 31:639-657.

Tsuang BJ, 2003. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part I—theory. AE 37:3981-3991.

Tsuang BJ, Chen CL, Lin CH, Cheng MT, Tsai YI, Chio CP, Pan RC, Kuo PH, 2003. Quantification on the source/receptor relationship of primary pollutants and secondary aerosols by a Gaussian plume trajectory model: Part II. case study. AE 37:3993-4006.

USEPA, 1984. Receptor model source composition library. Environmental Protection Agency Research Triangle Park, NC. EPA-450/4-85-002.

USEPA, 1994. A revised user’s guide to MESOPUFF II (V5.1). EPA 454/B-94-025, US Environment Protection Agency, Research Triangle Park, NC.

USEPA, 1991. Volatile organic compound (VOC)/particulate matter (PM) speciation data system user’s manual. Environmental Protection Agency Research Triangle Park, NC.

Vega E, Garcia I, Apam D, Ruiz ME, Barbiaux M, 1997. Application of a chemical mass balance receptor model to respirable particulate matter in Mexico city. JAWMA 47:524-529.

Wang CF, Chen WH, Yang MH, Chiang PC, 1995. Microwave decomposition for airborne particulate matter for the determination of trace elements by inductively coupled plasma mass spectrometry. Analyst 120:1681-1686.

Watson JG, 1979. Chemical element balance receptor model methodology for assessing the sources of fine and total suspended particulate matter in Portland, Oregon. Ph.D. Dissertation, Oregon Graduate Center, Beaverton, Oregon.

Watson JG, Chow JC, Lowenthal DH, Pritchett LC, Frazier CA, Neuroth GR, Robbins R, 1994. Differences in the carbon composition of source profiles for diesel- and gasoline-powered vehicles. AE 28:2493-2505.

Watson JG, Robinson NF, Chow JC, Henry RC, Kim BM, Pace TG, Meyer EL, Nguyen Q, 1990. The USEPA/DRI chemical mass balance receptor model, CMB 7.0. Environmental Software 5:38-49.

Watson JG, Robinson NF, Lewis C, Coulter T, Chow JC, Fujita EM, Lownethal DH, Conner TL, Henry RC, Willis RD, 1997. Chemical mass balance receptor model version 8 user’s manual, Desert Research Institute Document No. 1808.1D1.

Page last modified on 5 June 2006