Work experience
Postdoctoral Researcher, Precision Medicine, Yonsei University Wonju College of Medicine, Korea
Sep. 2024 – Present
Postdoctoral Researcher, Precision Medicine, Yonsei University Wonju College of Medicine, Korea
Sep. 2024 – Present
My work primarily focuses on developing diagnostic support and analysis models utilizing medical image data.
Ph.D., Biomedical Engineering, Yonsei University, Korea.
Mar. 2019 ~ Aug. 2024 (Under the supervision of Prof. Sejung Yang )
B.S., Biomedical Engineering, Yonsei University (Mirae), Korea
Mar. 2014 – Feb. 2020
1) Diagnosis supporting system (Dermatology) with deep learning
2) Medical augmented intelligence study
3) Explainable AI
4) Others (any data type)
Chu YS, Lee S, Lee SG, Chung KY, Roh MR, Oh B, Yang S, “Deep Learning Algorithms for Predicting Breslow Thickness from Dermoscopic Images of Acral Lentiginous Melanomas”, Journal of Investigative Dermatology., 2022.
Dong-Hwan Yang*, Yu-Seong Chu*, Odongo Francis Ngome Okello, Seung-Young Seo, Gunho Moon, Kwang Ho Kim, Moon-Ho Jo, Dongwon Shin, Sejung Yang and Si-Young Choi, “Full automation of point defect detection in transition metal dichalcogenides through dual mode deep learning algorithm”, Materials Horizons., 2024.
Yuseong Chu, Solam Lee, Byungho Oh, and Sejung Yang. "Class-Agnostic Feature-Learning-Based Deep-Learning Model for Robust Melanoma Prediction", IEEE Journal of Biomedical and Health Informatics (3/44 5.7% Medical informatics)., 2025.
-Published International Journals- (SCI or SCIE & Bold is main author)
1. Lee S, Chu YS, Yoo SK, Choi S, Choe SJ, Koh SB, Chung KY, Xing L, Oh B, Yang S, “Augmented decision-making for acral lentiginous melanoma detection using deep convolutional neural networks”, J. Eur. Acad. Dermatol. Venereol., 2020.
2. Chu YS., An, HG, Oh, BH, Yang S, “Artificial Intelligence in Cutaneous Oncology”, Frontiers in Medicine., 2020.
3. Lee S, Lee HC, Chu YS, Song SW, Ahn GJ, Lee H, Yang S, Koh SB, “Deep learning models for the prediction of intraoperative hypotension”, British Journal of Anaesthesia., 2021.
4. Odongo F. N. Okello, Yang DH, Chu YS, Yang S, Choi SY, “"Atomic-level defect modulation and characterization methods in 2D materials”, APL Materials., 2021.
5. Chu YS*, Lee S*, Lee SG, Chung KY, Roh MR, Oh B, Yang S, “Deep Learning Algorithms for Predicting Breslow Thickness from Dermoscopic Images of Acral Lentiginous Melanomas”, Journal of Investigative Dermatology., 2022.
6. Lee S*, Chu YS*, Ryu JS, Park YJ, Yang S, Koh SB, “Artificial Intelligence for Detection of Cardiovascular-Related Diseases from Wearable Devices: A Systematic Review and Meta-Analysis”, Yonsei Medical Journal., 2022.
7. Ji Seung Ryu, Solam Lee, Yuseong Chu, Sang Baek Koh, Young Jun Park, Ju Yeong Lee and Sejung Yang, “Deep Learning Algorithms for Estimation of Demographic and Anthropometric Features from Electrocardiograms”, Journal of Clinical Medicine., 2023.
8. Ji Seung Ryu, Solam Lee, Yuseong Chu, Min-Soo Ahn, Young Jun Park and Sejung Yang, “CoAt-Mixer: Self-attention deep learning framework for left ventricular hypertrophy using electrocardiography”, Plos One., 2023.
9. Dong-Hwan Yang*, Yu-Seong Chu*, Odongo Francis Ngome Okello, Seung-Young Seo, Gunho Moon, Kwang Ho Kim, Moon-Ho Jo, Dongwon Shin, Sejung Yang and Si-Young Choi, “Full automation of point defect detection in transition metal dichalcogenides through dual mode deep learning algorithm”, Materials Horizons., 2024.
10. Odongo Francis Ngome Okello, Dong-Hwan Yang, Seung-Young Seo, Jewook Park, Gunho Moon, Dongwon Shin, Yu-Seong Chu, Sejung Yang, Teruyasu Mizoguchi, Moon-Ho Jo, Si-Young Choi. "Atomistic Probing of Defect-Engineered 2H-MoTe2 Monolayers." ACS nano., 2024.
11. Yuseong Chu*, Seung-Won Jung*, Solam Lee, Sang Gyun Lee, Yeon-Woo Heo, Sang-Hoon Lee, Hang-Seok Chang, Yong Sang Lee, Seok-Mo Kim, Sang Eun Lee, Byungho Oh, Mi Ryung Roh, Sejung Yang., "Deep Learning Algorithms for Assessment of Post-Thyroidectomy Scar Subtype", Dermatologic Therapy., 2025.
12. Yuseong Chu, Solam Lee, Byungho Oh, and Sejung Yang. "Class-Agnostic Feature-Learning-Based Deep-Learning Model for Robust Melanoma Prediction", IEEE Journal of Biomedical and Health Informatics (3/44 5.7% Medical informatics)., 2025.
13. Ji Seung Ryu, Hyunyoung Kang, Yuseong Chu and Sejung Yang. "Vision-language foundation models for medical imaging: a review of current practices and innovations", Biomedical Engineering Letters., 2025.
14. Ui-jae Hwang, Junghun Han, Oh-yun Kwon, Yu Seong Chu and Sejung Yang. "Classifying office workers with and without cervicogenic headache or neck and shoulder pain using posture-based deep learning models: a multicenter retrospective study", Frontiers in Pain Research., 2025.
-Published International Journals-
Heejae Lee, Sejung Yang, Yuseong Chu† and Byungho Oh†. "Identifying Gender-Specific Visual Bias Signals in Skin Lesion Classification", International Conference on Medical Image Computing and Computer-Assisted Intervention Workshops 2025.
Yusung Chu, Byungho Oh and Sejung Yang. "Evaluating the Trustworthiness of Foundation Models for Skin Lesion Segmentation", Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops 2025.
Patent
Korea Patents
1. Title: METHOD FOR ANALYZING ATOMIC IMAGES OF LOW DIMENSIONAL MATERIALS
Invertors: Dong-Hwan Yang, Siyoung Choi, Kyoung-June Go, Odongo Francis Ngome Okello, Gi-Yeop Kim, Yuseong Chu, Junghun Han, Sejung Yang
Registration No.: 1022532270000 (2021.05.12)
2. Title: Method, device and program for diagnosis of melanoma using deep learning
Invertors: Sejung Yang, Chung Kee Yang, Byung Ho Oh, Solam Lee, Sang Baek Koh, Sangkyun Yoo, Yuseong Chu
Registration No.: 1022972420000 (2021.08.27)
3. 딥러닝을 이용한 흑색종 진단 방법, 장치 및 프로그램
발명자: 양세정, 정기양, 오병호, 이솔암, 고상백, 유상균 추유성
등록번호: 제 10-2376717 (2022.03.16)
Award
2023 Korea Society of Digital Health "CycleGAN을 활용한 갑상선 절제 수술 후 흉터 예후 이미지 생성 방법", Grand Award.