Mrs. Youngbauer

E- Learning Document Link:  In the event of possible e-learning days due to this blizzard in March: https://docs.google.com/document/d/1Z6QM2JyCX_VhCvk7r9hg9kpTbff9hRM-eGcTDNS_UbM/edit

About Me:

Name: Kelly Youngbauer

Year: 29th

Contact Information:

Phone: (218) 445-5184 ext. 408

Best time to call: 4th Hour Prep Period @ 

10:48 - 11:36 on regular school days.

Email: kyoungbauer@verndaleschool.org

Daily Schedule

1st hour: 8:15-9:03 am: 11th and 12 Grade Human Biology 

2nd hour: 9:06 - 9:54 am:  7th Grade Life Science

3rd hour: 9:57 - 10:45 am:  10th Grade Biology

4th hour: 10:48 - 11:36 am: Prep Period

PT2: 11:39 am - 12: 06 pm

5th hour: 12:39 - 1:27 pm: 10th Grade Biology

6th Hour: 1:30- 2: 18 pm: 7th Grade Life Science

7th Hour: 2:21 - 3:09 pm: College Environmental Science

College Human Biology

College Human Biology studies the 11 organ systems of the body and how they help keep the body at homeostasis.

Google Classroom: https://classroom.google.com/c/Mzg0NDk3NTg1MTE3


Life Science

Life Science studies the structure and function of living things from the smallest of cells to the largest of organisms.

Google Classroom: https://classroom.google.com/c/Mzg0NDk3NTA1Njg3


Biology

Biology is also the study of living things from the cellular level to the organismal level.

Google Classroom: https://classroom.google.com/c/Mzg0NDk3NTg1MDY5


College Environmental Science

Environmental science studies many aspects of the Earth especially the impact that humans have had on their habitat. 

Google Classroom: https://classroom.google.com/c/MTYxMTk4Njg3NjVa


My High Reliability Goal: Understanding Student Backgrounds and Interests

Critical Learning Concepts. 

Earth Science:

MS-ESS1-1 Earth's Place in the Universe

Develop and use a model of the Earth-sun-moon system to describe the cyclic patterns of lunar phases, eclipses of the sun and moon, and seasons.

MS-ESS1-3 Earth's Place in the Universe

Analyze and interpret data to determine scale properties of objects in the solar system.

MS-ESS1-4 Earth's Place in the Universe

Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old history.

MS-ESS2-1 Earth's Systems

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

MS-ESS2-2 Earth's Systems

Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

MS-ESS2-3 Earth's Systems

Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

 

MS-ESS2-4 Earth's Systems

Develop a model to describe the cycling of water through Earth's systems driven by energy from the sun and the force of gravity.

MS-ESS2-5 Earth's Systems

Collect data to provide evidence for how the motions and complex interactions of air masses results in changes in weather conditions.

MS-ESS2-6 Earth's Systems

Develop and use a model to describe how unequal heating and rotation of the Earth cause patterns of atmospheric and oceanic circulation that determine regional climates.

MS-ESS3-2 Earth and Human Activity

Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

MS-ESS3-5 Earth and Human Activity

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.


Life Science:

MS-LS1-1 From Molecules to Organisms: Structures and Processes

Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

MS-LS1-2 From Molecules to Organisms: Structures and Processes

Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function

MS-LS1-6 From Molecules to Organisms: Structures and Processes

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

MS-LS2-2 Ecosystems: Interactions, Energy, and Dynamics

Construct an explanation that predicts patterns of interactions among organisms across multiple ecosystems.

MS-LS2-3 Ecosystems: Interactions, Energy, and Dynamics

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.

MS-LS3-1 Heredity: Inheritance and Variation of Traits

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

MS-LS3-2 Heredity: Inheritance and Variation of Traits

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

MS-LS4-2 Biological Evolution: Unity and Diversity

Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

MS-LS4-3 Biological Evolution: Unity and Diversity

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

MS-LS4-4 Biological Evolution: Unity and Diversity

Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals’ probability of surviving and reproducing in a specific environment.

MS-LS4-6 Biological Evolution: Unity and Diversity

Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

 

Biology:

HS-LS1-1 From Molecules to Organisms: Structures and Processes

Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.

 

HS-LS1-4 From Molecules to Organisms: Structures and Processes

Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.

HS-LS1-5 From Molecules to Organisms: Structures and Processes

Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.

HS-LS1-7 From Molecules to Organisms: Structures and Processes

Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy.

HS-LS2-2 Ecosystems: Interactions, Energy, and Dynamics

Use mathematical representations to support and revise explanations based on evidence about factors affecting biodiversity and populations in ecosystems of different scales.

HS-LS2-3 Ecosystems: Interactions, Energy, and Dynamics

Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.

HS-LS2-5 Ecosystems: Interactions, Energy, and Dynamics

Develop a model to illustrate the role of photosynthesis and cellular respiration in the cycling of carbon among the biosphere, atmosphere, hydrosphere, and geosphere.

HS-LS1-1 From Molecules to Organisms: Structures and Processes

Construct an explanation based on evidence for how the structure of DNA determines the structure of proteins which carry out the essential functions of life through systems of specialized cells.

HS-LS3-2 Heredity: Inheritance and Variation of Traits

Make and defend a claim based on evidence that inheritable genetic variations may result from (1) new genetic combinations through meiosis, (2) viable errors occurring during replication, and/or (3) mutations caused by environmental factors.

HS-LS3-3 Heredity: Inheritance and Variation of Traits

Apply concepts of statistics and probability to explain the variation and distribution of expressed traits in a population.

 

HS-LS4-1 Biological Evolution: Unity and Diversity

Communicate scientific information that common ancestry and biological evolution are supported by multiple lines of empirical evidence

HS-LS4-2 Biological Evolution: Unity and Diversity

Construct an explanation based on evidence that the process of evolution primarily results from four factors: (1) the potential for a species to increase in number, (2) the heritable genetic variation of individuals in a species due to mutation and sexual reproduction, (3) competition for limited resources, and (4) the proliferation of those organisms that are better able to survive and reproduce in the environment.

HS-LS4-3 Biological Evolution: Unity and Diversity

Apply concepts of statistics and probability to support explanations that organisms with an advantageous heritable trait tend to increase in proportion to organisms lacking this trait.

HS-LS4-4 Biological Evolution: Unity and Diversity

Construct an explanation based on evidence for how natural selection leads to adaptation of populations.