Fotheringham, A.S., Oshan, T., & Li, Z. (2023). Multiscale Geographically Weighted Regression: Theory and Practice (1st ed.). CRC Press. doi: 10.1201/9781003435464
*Corresponding †Student
2025
Li, Z. Explainable AI in Spatial Analysis. In: Huang, X., Wang, S., Wilson, J., Kedron, P. (eds) GeoAI and Human Geography. Springer Geography. Springer, Cham. https://doi.org/10.1007/978-3-031-87421-5_5
Li, Z.* and Peng, Z. Can Moran Eigenvectors Improve Machine Learning of Spatial Data? Insights from Synthetic Data Validation. Geographical Analysis. 10.1111/gean.70011
Yuan, X.†, Li, Z., Basiri, A., & Wang, M. (2025). Where England’s Cities Are Growing: Evidence from Big Building Footprint Data and Explainable AI. Habitat International. doi.org/10.1016/j.habitatint.2025.103457
Zhang, S† and Li, Z. (2025). Geographically Weighted Cronbach’s Alpha (GWalpha): an Exploratory Local Measure of Reliability for Scale Construction. Geographical Analysis. https://doi.org/10.1111/gean.70021
Luo, P., Li, Y., Song, Y., Li, Z., & Meng, L. (202) Measuring univariate effects in the interaction of geographical patterns. International Journal of Geographical Information Science. doi: 10.1080/13658816.2025.2526042
Sutton, D.†, Basiri, A., and Li, Z. (2025). Exploring a Diagnostic Test for Missingness At Random. Mathematics. 10.3390/math13111728
Gao, X., Mesev, V., Li, Z., and Downs, J. SAPC: A new overland flow accumulation algorithm with enhanced adaptability to terrain surface variations. Transactions in GIS. 10.1111/tgis.70054
Foroutan, E., Hu, T. & Li, Z. (2025). Revealing Key Factors of Heat-related Illnesses using Geospatial Explainable AI Model: A Case Study in Texas, USA. Sustainable Cities and Society. 10.1016/j.scs.2025.106243
Deng, Rui†., Li., Z. & Wang, M. (2025). GeoAggregator: An Efficient Transformer Model for Geo-spatial Tabular Data. 39th Annual AAAI Conference on Artificial Intelligence (AAAI). https://ojs.aaai.org/index.php/AAAI/article/view/33259/
Yuan†, X., Li, Z., Basiri, A., & Wang, M. (2025). Construction enthusiasts versus demolition giants: Insights from building footprint data in England. Environment and Planning B: Urban Analytics and City Science, 23998083251317573.
2024
Li, Z. Regression Fundamentals (2024). The Geographic Information Science & Technology Body of Knowledge, John P. Wilson (Ed). doi: 10.22224/gistbok/2024.1.11
Zhang, Z., Li, Z. & Song, Y. (2024). On ignoring the heterogeneity in spatial autocorrelation: consequences and solutions. International Journal of Geographical Information Science.
Li, Z. (2024). GeoShapley: A Game-Theory Method for Measuring Spatial Effects in Machine Learning Models. Annals of the American Association of Geographers. Doi: 10.1080/24694452.2024.2350982. Link
Zhang, S.†, and Li, Z. (2024). Multilevel Geographical Process Models (MGPMs): A Novel Framework for Modeling Individual- and Multi-Level Spatial Process Heterogeneity. The 27th Association of Geographic Information Laboratories in Europe (AGILE), Glasgow, UK. doi:10.5194/agile-giss-5-55-2024.
2023
Russell, A.†, Li, Z* & Wang, M. (2023). Equalizing Urban Agriculture Access in Glasgow: A Spatial Optimization Approach. International Journal of Applied Earth Observation and Geoinformation. doi: https://www.sciencedirect.com/science/article/pii/S1569843223003497
Yao, J., Li, Z.*, Zhang, X., Liu, C., & Ren, L. (2023). A Comparison of Global and Local Statistical and Machine Learning Techniques in Estimating Flash Flood Susceptibility. The 12 International Conference on Geographic Information Science (GIScience), Leeds, UK. doi: 10.4230/LIPIcs.GIScience.2023.86
Fotheringham, A. S. & Li, Z.* (2023). Measuring the Unmeasurable: Models of Geographical Context. Annals of the American Association of Geographers. Doi: 10.1080/24694452.2023.2227690.
Lei, F., Ma, Y., Fotheringham, A. S., Mack, E., Li, Z. Sachdeva, M., Bardin, S. & Maciejewski, R. (2003). GeoExplainer: A Visual Analytics Framework for Spatial Modeling Contextualization and Report Generation. IEEE Transactions on Visualization and Computer Graphics (TVCG). Link
Zhang, S† & Li, Z. (2023). Geographically Weighted Cronbach’s Alpha. Geographical Information Science Research UK 2023, Glasgow, UK. Doi: 10.5281/zenodo.7834162
Li, Z.* (2023). Leveraging explainable artificial intelligence and big trip data to understand factors influencing willingness to ridesharing. Travel Behaviour and Society, 31, 284-294.
2022
Li, Z.* (2022). Extracting spatial effects from machine learning model using local interpretation method: An example of SHAP and XGBoost. Computers, Environment and Urban Systems. Link (ESI 0.1% Cited)
Xi, G., Lu, Y., Beene, D., Li, Z., Hu, T., Morgan, M., & Yan Lin. (2022). Understanding public perspectives on fracking in the United States using social media big data. Annals of GIS. Link
Fotheringham, A.S., Yu, H., Wolf, L., Oshan T., Li,Z. (2022). On the notion of ‘bandwidth’ in geographically weighted regression models of spatially varying processes. International Journal of Geographical Information Science. Link
Sachdeva, M., Fotheringham, A. S., Li, Z. (2022). Quantifying the intrinsic value of housing neighborhoods using MGWR. Journal of Housing Research. Link.
Li, Z.* & Fotheringham, A. S. (2022). The Spatial and Temporal Dynamics of Voter Preference Determinants in Four U.S. Presidential Elections (2008-2020). Transactions in GIS. Link.
Li, Z.* & Xu, T†. (2022). Understanding Factors Influencing Willingness to Ridesharing Using Big Trip Data and Interpretable Machine Learning. Geographical Information Science Research UK 2022, Liverpool. doi: 10.5281/zenodo.6411504
2021
Zhao, Q., Li, Z., Shah D., Fischer, H., Solís, P. & Wentz, E. (2021). Understanding the Interaction between Human Activities and Physical Health under Extreme Heat Environment in Phoenix, Arizona. Health and Place. Link
Sachdeva, M., Fotheringham, A. S., Li, Z. & Yu, H. (2021). Are we modelling spatially varying processes or non-linear relationships? Geographical Analysis. Link
Rey, S., Anselin, L., Amaral, P., Arribas-Bel, D., Cortes, R., Gaboardi, J., Kang, W., Knaap, E., Li, Z., LumnitzU, S., Oshan, T., Shao, H., & Wolf, L. (2021). The PySAL ecosystem: philosophy and implementation. Geographical Analysis. Link
Kurji, J., Thickstun, C., Bulcha, G., Taljaard, M., Li. Z. & Kulkarni, M. (2021). Spatial variability in factors influencing maternal health service use in Jimma Zone, Ethiopia: a geographically-weighted regression analysis. BMC Health Services Research. 21(454). Link
Fotheringham, A. S., Li, Z., & Wolf, L. J. (2021). Scale, Context and Heterogeneity: A Spatial Analytical Perspective on the 2016 US Presidential Election. Annals of the American Association of Geographers. Link
2020
Wang, C., Li, Z., Matthews, M., Praharaj, S., Karna, B., Solis, P. (2020) The Spatial Association of Social Vulnerability with COVID-19 Prevalence in the Contiguous United States. International Journal of Environmental Health Research. Link.
Li, Z.*, Fotheringham, A. S. (2020). Computational improvements to multi-scale geographically weighted regression. International Journal of Geographical Information Science. 34(7), 1378-1397. Link (AAG Nystrom Award Winning Paper)
Li, Z.*, Fotheringham, A. S., Oshan, T. & Wolf, L. J. (2020). Measuring bandwidth uncertainty in multiscale geographically weighted regression using Akaike weights. Annals of the American Association of Geographers. Link (AAG-SAM John Odland Award Winning Paper)
Yu, H., Fotheringham, A. S., Li, Z., Oshan, T., & Wolf, L. J. (2020). On the measurement of bias in geographically weighted regression models. Spatial Statistics. Link.
2019
Fotheringham, A. S., Han, Y., & Li, Z. (2019). Examining the influences of ambient air quality in China’s cities using multi-scale geographically weighted regression. Transactions in GIS , 23(6), 1444-1464. Link
Li, Z.*, Fotheringham, A. S., Li, W., & Oshan, T. (2019). Fast Geographically Weighted Regression (FastGWR): a scalable algorithm to investigate spatial process heterogeneity in millions of observations. International Journal of Geographical Information Science, 33(1), 155-175. Link
Oshan, T., Li, Z., Kang, W., Wolf, L. J., & Fotheringham, A. S. (2019). mgwr: A Python implementation of multi-scale geographically weighted regression for investigating process spatial heterogeneity and scale. ISPRS International Journal of Geo-Information. 8(6), 286. Link (ESI 1% Cited)
Oshan, T., Wolf, L. J., Fotheringham, A. S., Kang, W., Li, Z., & Yu, H. (2019). A comment on geographically weighted regression with parameter-specific distance metrics, International Journal of Geographical Information Science, 33(7), 1289-1299. Link
Yu, H., Fotheringham, A. S., Li, Z., Oshan, T., Kang, W., & Wolf, L. J. (2019). Inference in multiscale geographically weighted regression. Geographical Analysis. 52(1), 87-106. Link (ESI 1% Cited)
2018 and earlier
Li, Z. NoSQL Databases (2018). The Geographic Information Science & Technology Body of Knowledge (2nd Quarter 2018 Edition), John P. Wilson (Ed). Link
Li, Z.*, Zhang, Z., & Davey, K. (2015). Estimating geographical PV potential using LiDAR data for buildings in downtown San Francisco. Transactions in GIS, 19(6), 930-963. Link