Here, we developed RustNet, a neural network-based image classifier, for efficiently monitoring fields for stripe rust. RustNet was built on a ResNet-18 architecture pre-trained with ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) dataset using transfer learning. RGB images and videos of multiple wheat fields with different wheat types (winter and spring wheat), conditions (irrigated and non-irrigated), and locations were acquired using smartphones or unmanned aerial vehicles near the canopy. A semi-automated image labeling approach was conducted to improve labeling efficiency by combining automated machine labeling and human correction. Cross-validations across multiple categories (sensor platforms, wheat types, and locations) achieved Area Under Curve, the area under the receiver operating characteristic (ROC) curves, from 0.72 to 0.87. Independent validation on a published dataset from Germany achieved accuracies ranging from 0.79 to 0.86. The visualization of the last convolutional layer of RustNet demonstrated the identification of pixels with stripe rust.Â
The CNN model for wheat stripe rust detection in the single leaf can be used in the open source software (Rooster), which supports batch mode to process multiple RGB image from smartphones and drones.