Interfacial water
Interfacial water
Verdaguer A, Sacha G M, Bluhm H, et al. Molecular structure of water at interfaces: Wetting at the nanometer scale[J]. Chemical reviews, 2006, 106(4): 1478-1510.
Björneholm O, Hansen M H, Hodgson A, et al. Water at interfaces[J]. Chemical reviews, 2016, 116(13): 7698-7726.
Gonella G, Backus E H G, Nagata Y, et al. Water at charged interfaces[J]. Nature Reviews Chemistry, 2021, 5(7): 466-485.
Nanofluidic
Bibliography
General reviews
Schoch R B, Han J, Renaud P. Transport phenomena in nanofluidics[J]. Reviews of modern physics, 2008, 80(3): 839.
Daiguji H. Ion transport in nanofluidic channels[J]. Chemical Society Reviews, 2010, 39(3): 901-911.
Bocquet L, Charlaix E. Nanofluidics, from bulk to interfaces[J]. Chemical Society Reviews, 2010, 39(3): 1073-1095.
Sparreboom W, van den Berg A, Eijkel J C T. Transport in nanofluidic systems: a review of theory and applications[J]. New Journal of Physics, 2010, 12(1): 015004.
Faucher S, Aluru N, Bazant M Z, et al. Critical knowledge gaps in mass transport through single-digit nanopores: A review and perspective[J]. The Journal of Physical Chemistry C, 2019, 123(35): 21309-21326.
Kavokine N, Netz R R, Bocquet L. Fluids at the nanoscale: From continuum to subcontinuum transport[J]. Annual Review of Fluid Mechanics, 2021, 53: 377-410.
Bocquet L. Nanofluidics coming of age[J]. Nature materials, 2020, 19(3): 254-256.
You Y, Ismail A, Nam G H, et al. Angstrofluidics: Walking to the limit[J]. Annual Review of Materials Research, 2022, 52: 189-218.
Robin P, Bocquet L. Nanofluidics at the crossroads[J]. The Journal of Chemical Physics, 2023, 158(16).
Clean energy reviews
Logan B E, Elimelech M. Membrane-based processes for sustainable power generation using water[J]. Nature, 2012, 488(7411): 313-319.
Siria A, Bocquet M L, Bocquet L. New avenues for the large-scale harvesting of blue energy[J]. Nature Reviews Chemistry, 2017, 1(11): 0091.
Zhang Z, Wen L, Jiang L. Nanofluidics for osmotic energy conversion[J]. Nature Reviews Materials, 2021, 6(7): 622-639.
Electrochemistry
Book chapter: Sarno M. Nanotechnology in energy storage: The supercapacitors[M]//Studies in surface science and catalysis. Elsevier, 2020, 179: 431-458.
Article. The difference between Faradaic and non-Faradaic electrode processes[J]. arXiv preprint arXiv:1809.02930, 2018.
AQPs/Memristor /Transistors/Diode
Schasfoort R B M, Schlautmann S, Hendrikse J, et al. Field-effect flow control for microfabricated fluidic networks[J]. Science, 1999, 286(5441): 942-945.
Tajkhorshid E, Nollert P, Jensen M Ø, et al. Control of the selectivity of the aquaporin water channel family by global orientational tuning[J]. Science, 2002, 296(5567): 525-530.
Sui H, Han B G, Lee J K, et al. Structural basis of water-specific transport through the AQP1 water channel[J]. Nature, 2001, 414(6866): 872-878.
Karnik R, Fan R, Yue M, et al. Electrostatic control of ions and molecules in nanofluidic transistors[J]. Nano letters, 2005, 5(5): 943-948.
Karnik R, Castelino K, Majumdar A. Field-effect control of protein transport in a nanofluidic transistor circuit[J]. Applied Physics Letters, 2006, 88(12).
Karnik R, Duan C, Castelino K, et al. Rectification of ionic current in a nanofluidic diode[J]. Nano letters, 2007, 7(3): 547-551.
Guan W, Fan R, Reed M A. Field-effect reconfigurable nanofluidic ionic diodes[J]. Nature communications, 2011, 2(1): 506.
Robin P, Kavokine N, Bocquet L. Modeling of emergent memory and voltage spiking in ionic transport through angstrom-scale slits[J]. Science, 2021, 373(6555): 687-691.
P. Robin et al. Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels. Science 379, 161-167(2023).
Theories
Book chapter:: The electric double layer(chapter4) and Effects at charged interfaces (chapter5).
Book chapter: Charged Membranes: Poisson–Boltzmann Theory, The DLVO Paradigm, and Beyond (Handbook of Lipid Membranes: Molecular, Functional, and Materials Aspects (1st ed.). CRC Press. ) or CHAPTER 12 - Electrostatic Properties of Membranes: The Poisson-Boltzmann Theory (Handbook of Biological Physics, ISBN 9780444819758)
Note by Laurent Joly: Poisson-Boltzmann formulary.
Book: Hunter R J, White L R, Chan D Y C. Foundations of colloid science. 1987.
Book: Li, Zhigang. Nanofluidics: An Introduction. CRC Press, 2018..
Book: Li, Dongqing. Electrokinetics in microfluidics. Elsevier, 2004..
BIBLE: Intermolecular and Surface Forces. Revised Third Edition Book • Third Edition • 2011.
Islam M A. Einstein–Smoluchowski diffusion equation: a discussion[J]. Physica Scripta, 2004, 70(2-3): 120. (Note: Maxwell–Boltzmann is needed)
Chandrasekhar S. Stochastic problems in physics and astronomy[J]. Reviews of modern physics, 1943, 15(1): 1.
Hydrovoltaics
Král P, Shapiro M. Nanotube electron drag in flowing liquids[J]. Physical review letters, 2001, 86(1): 131.
Ghosh S, Sood A K, Kumar N. Carbon nanotube flow sensors[J]. Science, 2003, 299(5609): 1042-1044.
Zhao Y, Song L, Deng K, et al. Individual water-filled single-walled carbon nanotubes as hydroelectric power converters[J]. ADVANCED MATERIALS-DEERFIELD BEACH THEN WEINHEIM-, 2008, 20(9): 1772.
Yin J, Li X, Yu J, et al. Generating electricity by moving a droplet of ionic liquid along graphene[J]. Nature nanotechnology, 2014, 9(5): 378-383.
Rabinowitz J, Cohen C, Shepard K L. An electrically actuated, carbon-nanotube-based biomimetic ion pump[J]. Nano letters, 2019, 20(2): 1148-1153.
Kavokine N, Bocquet M L, Bocquet L. Fluctuation-induced quantum friction in nanoscale water flows[J]. Nature, 2022, 602(7895): 84-90.
Lizée M, Marcotte A, Coquinot B, et al. Strong electronic winds blowing under liquid flows on carbon surfaces[J]. Physical Review X, 2023, 13(1): 011020.
Quantum emission
Tran T T, Bray K, Ford M J, et al. Quantum emission from hexagonal boron nitride monolayers[J]. Nature nanotechnology, 2016, 11(1): 37-41.
Tawfik S A, Ali S, Fronzi M, et al. First-principles investigation of quantum emission from hBN defects[J]. Nanoscale, 2017, 9(36): 13575-13582.
Feng J, Deschout H, Caneva S, et al. Imaging of optically active defects with nanometer resolution[J]. Nano letters, 2018, 18(3): 1739-1744.
Comtet J, Glushkov E, Navikas V, et al. Wide-field spectral super-resolution mapping of optically active defects in hexagonal boron nitride[J]. Nano letters, 2019, 19(4): 2516-2523.
Comtet J, Grosjean B, Glushkov E, et al. Direct observation of water-mediated single-proton transport between hBN surface defects[J]. Nature nanotechnology, 2020, 15(7): 598-604.
Comtet J, Rayabharam A, Glushkov E, et al. Anomalous interfacial dynamics of single proton charges in binary aqueous solutions[J]. Science Advances, 2021, 7(40): eabg8568.
Ronceray N, You Y, Glushkov E, et al. Liquid-activated quantum emission from pristine hexagonal boron nitride for nanofluidic sensing[J]. Nature Materials, 2023, 22(10): 1236-1242.
Koehl W F, Buckley B B, Heremans F J, et al. Room temperature coherent control of defect spin qubits in silicon carbide[J]. Nature, 2011, 479(7371): 84-87.
Neumann M, Wei X, Morales-Inostroza L, et al. Organic molecules as origin of visible-range single photon emission from hexagonal boron nitride and mica[J]. ACS nano, 2023.
Kianinia M, Xu Z Q, Toth M, et al. Quantum emitters in 2D materials: Emitter engineering, photophysics, and integration in photonic nanostructures[J]. Applied Physics Reviews, 2022, 9(1).
Morfa A J, Gibson B C, Karg M, et al. Single-photon emission and quantum characterization of zinc oxide defects[J]. Nano letters, 2012, 12(2): 949-954.
Polking M J, Dibos A M, de Leon N P, et al. Improving defect‐based quantum emitters in silicon carbide via inorganic passivation[J]. Advanced Materials, 2018, 30(4): 1704543.
Stewart C, Kianinia M, Previdi R, et al. Quantum emission from localized defects in zinc sulfide[J]. Optics Letters, 2019, 44(19): 4873-4876.
Voltage sensor
Peterka D S, Takahashi H, Yuste R. Imaging voltage in neurons[J]. Neuron, 2011, 69(1): 9-21.
St-Pierre F, Marshall J D, Yang Y, et al. High-fidelity optical reporting of neuronal electrical activity with an ultrafast fluorescent voltage sensor[J]. Nature neuroscience, 2014, 17(6):
Gong Y, Huang C, Li J Z, et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor[J]. Science, 2015, 350(6266): 1361-1366.
Miller E W. Small molecule fluorescent voltage indicators for studying membrane potential[J]. Current Opinion in Chemical Biology, 2016, 33: 74-80.
Ortiz G, Liu P, Naing S H H, et al. Synthesis of sulfonated carbofluoresceins for voltage imaging[J]. Journal of the American Chemical Society, 2019, 141(16): 6631-6638.
Xu Y, Peng L, Wang S, et al. Hybrid indicators for fast and sensitive voltage imaging[J]. Angewandte Chemie, 2018, 130(15): 4013-4017.
Liu S, Lin C, Xu Y, et al. A far-red hybrid voltage indicator enabled by bioorthogonal engineering of rhodopsin on live neurons[J]. Nature Chemistry, 2021, 13(5): 472-479.
Liu S, Ling J, Chen P, et al. Orange/far-red hybrid voltage indicators with reduced phototoxicity enable reliable long-term imaging in neurons and cardiomyocytes[J]. Proceedings of the National Academy of Sciences, 2023, 120(34): e2306950120.
Efros A L, Delehanty J B, Huston A L, et al. Evaluating the potential of using quantum dots for monitoring electrical signals in neurons[J]. Nature nanotechnology, 2018, 13(4): 278-288.
2D materials
Chaves A, Azadani J G, Alsalman H, et al. Bandgap engineering of two-dimensional semiconductor materials[J]. npj 2D Materials and Applications, 2020, 4(1): 29.
SMLM
Huang B, Wang W, Bates M, et al. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy[J]. Science, 2008, 319(5864): 810-813.
Huang B, Bates M, Zhuang X. Super-resolution fluorescence microscopy[J]. Annual review of biochemistry, 2009, 78: 993-1016.
Khater I M, Nabi I R, Hamarneh G. A review of super-resolution single-molecule localization microscopy cluster analysis and quantification methods[J]. Patterns, 2020, 1(3).
Hugelier S, Colosi P L, Lakadamyali M. Quantitative Single-Molecule Localization Microscopy[J]. Annual Review of Biophysics, 2023, 52: 139-160.
Niederauer C, Seynen M, Zomerdijk J, et al. The K2: Open-source simultaneous triple-color TIRF microscope for live-cell and single-molecule imaging[J]. HardwareX, 2023, 13: e00404.
Surface diffusion
Bychuk O V, O'Shaughnessy B. Anomalous diffusion at liquid surfaces[J]. Physical review letters, 1995, 74(10): 1795.
Honciuc A, Harant A W, Schwartz D K. Single-molecule observations of surfactant diffusion at the solution− solid interface[J]. Langmuir, 2008, 24(13): 6562-6566.
Walder R, Nelson N, Schwartz D K. Super-resolution surface mapping using the trajectories of molecular probes[J]. Nature communications, 2011, 2(1): 515.
Walder R, Nelson N, Schwartz D K. Single molecule observations of desorption-mediated diffusion at the solid-liquid interface[J]. Physical review letters, 2011, 107(15): 156102.
Sriram I, Walder R, Schwartz D K. Stokes–Einstein and desorption-mediated diffusion of protein molecules at the oil–water interface[J]. Soft Matter, 2012, 8(22): 6000-6003.
Skaug M J, Mabry J, Schwartz D K. Intermittent molecular hopping at the solid-liquid interface[J]. Physical review letters, 2013, 110(25): 256101.
Skaug M J, Mabry J N, Schwartz D K. Single-molecule tracking of polymer surface diffusion[J]. Journal of the American Chemical Society, 2014, 136(4): 1327-1332.
Industry
Companies
Aquaporin A/S from Denmark