Causal inference
Cho, Y., Zhu, Y., Kwon, S., Hyun, J. and Hall, C. (2024). Mediation analysis with multiple mediators for survival data, International Journal of Biostatistics, submitted.
Cho, Y., Zheng, C., Qi, L., Prentice, R. and Zhang, M-J. (2024). Causal Effect Estimation for Competing Risk Data in Randomized Trial: Adjusting High-dimensional Covariates to Gain Efficiency, Journal of Applied Statistics, under revision.
Cho, Y. (2024). Regression discontinuity for survival data. Communications for Statistical Applications and Methods, 31(1), 155-178.
Cao, Z., Cho, Y*. and Li, F. (2024), Transporting randomized trial results to estimate counterfactual survival functions in target populations. Pharmaceutical Statistics, https://doi.org/10.1002/pst.2354.
Su, X., Cho, Y*., Ni, L., Liu, L., and Dusseldorp, E. (2023), Refined Moderation Analysis with Categorical Outcomes in Precision Medicine. Statistics in Medicine, 42(4), 470-486 https://doi.org/10.1002/sim.9627.
Cho, Y.*, Hu, C. and Ghosh, D. (2021). Analysis of regression discontinuity designs using censored data. Journal of Statistical Research, 55(1), 225-248.
Cho, Y.*, Rau, A., Reiner, A., Auer, P. (2021). Mendelian randomization analysis with survival outcomes. Genetic Epidemiology, 45(1), 16-23. https://doi.org/10.1002/gepi.22354.
Ghosh, D. and Cho, Y. (2018). Predictive directions for individualized treatment selection in clinical trials. preprint arXiv:1807.03375v1 [stat.ME].
Machine learning
Cho, Y.*, Auer, P. and Ghosh, D. (2024). Nonlinear estimation methods for Mendelian randomization in genetic studies. Sankya B, https://doi.org/10.1007/s13571-023-00309-5.
Cho, Y*., Zhan, X and Ghosh, D. (2022). Nonlinear predictive directions in clinical trials. Computational Statistics & Data Analysis, 174 (107476), https://doi.org/10.1016/j.csda.2022.107476.
Cho, Y*., Molinaro, A., Hu, C. and Strawderman, R. (2022). Regression trees and ensembles for cumulative incidence functions. International Journal of Biostatistics, 18(2) 397-419. doi: 10.1515/ijb-2021-0014.
Cho, Y*. and Ghosh, D. (2021). Quantile-based subgroup identification for randomized clinical trials. Statistics in Biosciences, 13(1), 90-128. https://doi.org/10.1007/s12561-020-09286-z
Cho, Y*. and Ghosh, D. (2020). Bridging linearity-based and kernel-based sufficient dimension reduction. preprint arXiv:2010.15009.
Cho, Y., Molinaro, A., Hu, C. and Strawderman, R. (2020). Regression Trees for Cumulative Incidence Functions. preprint arXiv:2011.06706 [stat.ME]
Survival analysis
Cho, Y., Kim, S. and Ahn, K. W. (2024). Efficient estimation for the multivariate Cox model with missing covariates, Statistica Neerlandica, revision submitted.
Cho, Y*. and Ghosh, D. (2021). Covariate adjustment via propensity scores for recurrent events in the presence of dependent censoring. Communications in Statistics - Theory and Methods, 50(1), 216-236, DOI: 10.1080/03610926.2019.1634208.
Cho, Y.*, Hu, C. and Ghosh, D. (2018). Covariate adjustment using propensity scores for dependent censoring problems in the accelerated failure time model. Statistics in Medicine, 37(3), 390-404. DOI: 10.1002/sim.7513. https://onlinelibrary.wiley.com/doi/abs/10.1002/sim.7513
Cho, Y*. and Ghosh, D. (2017). A general approach to goodness of fit for U-processes. Statistica Sinica, 27(3), 1175-1192. DOI:10.5705/ss.202014.0141. http://www3.stat.sinica.edu.tw/sstest/oldpdf/A27n311.pdf
Cho, Y*. and Ghosh, D. (2015). Weighted estimation of the accelerated failure time model in the presence of dependent censoring. PLOS ONE, DOI: 10.1371/journal.pone.0124381. http://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0124381&type=printable