Publications
S. Fukushima, Y.-G. Ji, H. Kang, and X. Li, Finiteness of the stress in presence of closely located inclusions with imperfect bonding, Math. Ann. 391 (2025), no. 2, 1753-1778.
S. Fukushima, Y.-G. Ji, and H. Kang, A decomposition theorem of surface vector fields and spectral structure of the Neumann-Poincaré operator in elasticity, Trans. Amer. Math. Soc. 377 (2024), no. 3, 2065–2123.
S. Fukushima, Y.-G. Ji, H. Kang, and Y. Miyanishi, Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance: a review, J. Korean Soc. Ind. Appl. Math. 27 (2023), no. 2, 87–108.
Y.-G. Ji and H. Kang, Spectral properties of the Neumann-Poincaré operator on rotationally symmetric domains, Math. Ann. 387 (2023), no. 1-2, 1105–1123.
Y.-G. Ji and H. Kang, Spectrum of the Neumann-Poincaré operator and optimal estimates for transmission problems in presence of two circular inclusions, Int. Math. Res. Not. IMRN 2023 (2023), no. 9, 7638–7685. Correction: IMRN 2023, no. 7, 6299–6300.
Y.-G. Ji, H. Kang, X. Li, and S. Sakaguchi, Neutral inclusions, weakly neutral inclusions, and an over-determined problem for confocal ellipsoids, in: Geometric Properties for Parabolic and Elliptic PDE's, Springer INdAM Ser., 47 Springer, Cham, 2021, 151–181.
K. Ando, Y.-G. Ji, H. Kang, D. Kawagoe and Y. Miyanishi, Spectral structure of the Neumann-Poincaré operator on tori, Ann. Inst. H. Poincaré C Anal. Non Linéaire 36 (2019), no. 7, 1817–1828.
Y.-G. Ji and H. Kang, A concavity condition for existence of a negative value in Neumann-Poincaré spectrum in three dimensions, Proc. Amer. Math. Soc. 147 (2019), no. 8, 3431–3438.
K. Ando, Y.-G. Ji, H. Kang, K. Kim and S. Yu, Spectral properties of the Neumann-Poincaré operator and cloaking by anomalous localized resonance for the elasto-static system, European J. Appl. Math. 29 (2018), no. 2, 189–225.
Y.-G. Ji, K. Kim and G. Nakamura, Improved asymptotic analysis for dynamical probe method, J. Inverse Ill-Posed Probl. 24 (2016), no. 4, 489–498.